Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters










Publication year range
1.
Insects ; 15(2)2024 02 09.
Article in English | MEDLINE | ID: mdl-38392542

ABSTRACT

Are parasitoids less likely to find their Lepidoptera hosts on non-native hostplants than native hostplants? We predicted that with longer periods of coevolution between herbivores and the plants they consume, the parasitoids that provide top-down control would be more attuned to finding their hosts on native plants. To test this hypothesis, we collected immature stages of sulfur butterflies (the cloudless sulfur (Phoebis sennae) and the orange-barred sulfur (Phoebis agarithe) over a three-year period (2008-2011) from native and ornamental hostplants in the genus Senna in three different parts of the urban landscape of Miami, Florida, USA. We reared the immature specimens to pupation and either eclosion of adults or emergence of parasitoids and compared the levels of parasitization among the three areas, and among native vs. exotic hostplants. We found, contrary to our prediction, that caterpillars feeding on non-native leguminous hostplant species were more likely to be parasitized than those feeding on native hostplants. We discuss this surprising finding in the light of recent findings in other plant/herbivore/parasitoid systems.

2.
J Chem Theory Comput ; 19(22): 8032-8052, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37924295

ABSTRACT

In the noisy intermediate-scale quantum era, ab initio computation of electronic structure problems has become one of the major benchmarks for identifying the boundary between classical and quantum computational power. Basis sets play a key role in the electronic structure methods implemented on both classical and quantum devices. To investigate the consequences of single-particle basis sets, we propose a framework for more customizable basis set generation and optimization. This framework allows composite basis sets to go beyond typical basis set frameworks, such as atomic basis sets, by introducing the concept of mixed-contracted Gaussian-type orbitals. These basis set generations set the stage for more flexible variational optimization of basis set parameters. To realize this framework, we have developed an open-source software package named "Quiqbox" in the Julia programming language. We demonstrate various examples of using Quiqbox for basis set optimization and generation, ranging from optimizing atomic basis sets on the Hartree-Fock level, preparing the initial state for variational quantum eigensolver computation, and constructing basis sets with completely delocalized orbitals. We also include various benchmarks of Quiqbox for basis set optimization and ab initial electronic structure computation.

3.
Zookeys ; 1175: 5-162, 2023.
Article in English | MEDLINE | ID: mdl-37636532

ABSTRACT

The parasitoid wasp genus Alphomelon Mason, 1981 is revised, based on a combination of basic morphology (dichotomous key and brief diagnostic descriptions), DNA barcoding, biology (host data and wasp cocoons), and distribution data. A total of 49 species is considered; the genus is almost entirely Neotropical (48 species recorded from that region), but three species reach the Nearctic, with one of them extending as far north as 45° N in Canada. Alphomelon parasitizes exclusively Hesperiinae caterpillars (Lepidoptera: Hesperiidae), mostly feeding on monocots in the families Arecaceae, Bromeliaceae, Cannaceae, Commelinaceae, Heliconiaceae, and Poaceae. Most wasp species parasitize either on one or very few (2-4) host species, usually within one or two hesperiine genera; but some species can parasitize several hosts from up to nine different hesperiine genera. Among species with available data for their cocoons, roughly half weave solitary cocoons (16) and half are gregarious (17); cocoons tend to be surrounded by a rather distinctive, coarse silk (especially in solitary species, but also distinguishable in some gregarious species). Neither morphology nor DNA barcoding alone was sufficient on its own to delimit all species properly; by integrating all available evidence (even if incomplete, as available data for every species is different) a foundation is provided for future studies incorporating more specimens, especially from South America. The following 30 new species are described: cruzi, itatiaiensis, and palomae, authored by Shimbori & Fernandez-Triana; and adrianguadamuzi, amazonas, andydeansi, calixtomoragai, carolinacanoae, christerhanssoni, diniamartinezae, duvalierbricenoi, eldaarayae, eliethcantillanoae, gloriasihezarae, guillermopereirai, hazelcambroneroae, josecortesi, keineraragoni, luciarosae, manuelriosi, mikesharkeyi, osvaldoespinozai, paramelanoscelis, paranigriceps, petronariosae, ricardocaleroi, rigoi, rostermoragai, sergioriosi, and yanayacu, authored by Fernandez-Triana & Shimbori.

4.
Cells ; 12(12)2023 06 13.
Article in English | MEDLINE | ID: mdl-37371088

ABSTRACT

The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aß1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-ß oligomers (AßOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AßOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AßOs from ground zero is supported by Aß's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AßOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Neurons/metabolism , Entorhinal Cortex/metabolism , Prion Proteins/metabolism
5.
Zookeys ; 1156: 15-24, 2023.
Article in English | MEDLINE | ID: mdl-37214269

ABSTRACT

A new species of the rarely collected neotropical microgastrine braconid wasp genus Larissimus Nixon, represented previously by only a single described species, L.cassander Nixon, was recovered by the Caterpillars and Parasitoids of the Eastern Andes in Ecuador inventory project. Larissimusnigricanssp. nov. was reared from an unidentified species of arctiine Erebidae feeding on the common bamboo species Chusqueascandens Kunth at the Yanayacu Biological Station near Cosanga, Napo Province, Ecuador. The new species is described and diagnosed from L.cassander using both morphological and DNA barcode data.

6.
Pharm Res ; 39(7): 1497-1507, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35704250

ABSTRACT

PURPOSE: We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5. The bi-functional fusion protein, FC5-mFc-ABP (KG207-M) lowered both CSF and brain Aß levels after systemic dosing in transgenic mouse and rat models of Alzheimer's disease (AD). For development as a human therapeutic, we have humanized and further engineered the fusion protein named KG207-H. The purpose of the present study was to carry out comparative PK/PD studies of KG207-H in wild type rat and beagle dogs (middle-aged and older) to determine comparability of systemic PK and CSF exposure between rodent species and larger animals with more complex brain structure such as dogs. METHOD: Beagle dogs were used in this study as they accumulate cerebral Aß with age, as seen in human AD patients, and can serve as a model of sporadic AD. KG207-H (5 to 50 mg/kg) was administered intravenously and serum and CSF samples were serially collected for PK studies and to assess target engagement. KG207-H and Aß levels were quantified using multiplexed selected reaction monitoring mass spectrometry. RESULTS: After systemic dosing, KG207-H demonstrated similar serum pharmacokinetics in rats and dogs. KG207-H appeared in the CSF in a time- and dose-dependent manner with similar kinetics, indicating CNS exposure. Further analyses revealed a dose-dependent inverse relationship between CSF KG207-H and Aß levels in both species indicating target engagement. CONCLUSION: This study demonstrates translational attributes of BBB-crossing Aß-targeting biotherapeutic KG207-H in eliciting a pharmacodynamic response, from rodents to larger animal species.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dogs , Mice , Mice, Transgenic , Rats
8.
Curr Opin Insect Sci ; 50: 100861, 2022 04.
Article in English | MEDLINE | ID: mdl-34896617

ABSTRACT

The investigation of endogenous viral elements (EVEs) has historically focused on only a few lineages of parasitoid wasps, with negative results consistently underreported. Recent studies show that multiple viral lineages were integrated in at least seven instances in Ichneumonoidea and may be much more widespread than previously thought. Increasingly affordable genomic and bioinformatic approaches have made it feasible to search for viral sequences within wasp genomes, opening an extremely promising research avenue. Advances in wasp phylogenetics have shed light on the evolutionary history of EVE integration, although many questions remain. Phylogenetic proximity can be used as a guide to facilitate targeted screening, to estimate the number and age of integration events and to identify taxa involved in major host switches.


Subject(s)
Viruses , Wasps , Animals , DNA Viruses , Domestication , Phylogeny , Viruses/genetics , Wasps/genetics
9.
Zookeys ; 1061: 11-22, 2021.
Article in English | MEDLINE | ID: mdl-34720610

ABSTRACT

A new species of microgastrine wasp, Cotesiacassina Salgado-Neto, Vásquez & Whitfield, sp. nov., is described from southwestern Colombia in Tumaco, Nariño. This species is a koinobiont gregarious larval endoparasitoid, and spins a common mass of cocoons underneath the host caterpillars of Opsiphanescassina (Felder & Felder) (Lepidoptera, Nymphalidae), feeding on oil palm trees (interspecific hybrid Elaeisoleifera × E.guineensis) (Arecaceae). While superficially similar, both morphologically and biologically, to C.invirae Salgado-Neto & Whitfield from southern Brazil, the two species are distinct based on DNA barcodes, host species, geographical range and morphological characters.

10.
Zootaxa ; 5047(4): 489-494, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34810830

ABSTRACT

A new genus of the braconid wasp tribe Cedriini, Sagarana n. gen., (Hymenoptera, Braconidae) is described and illustrated from the Brazilian cerrado based on a newly discovered species, Sagarana cerradensis n. sp. The genus is clearly distinct from the other genera of the Cedriini, with unusual fringed depressions on the second metasomal sternite that are of unknown function. The confusing taxonomy of this tribe is briefly discussed.


Subject(s)
Hymenoptera , Wasps , Animals , Brazil
12.
Commun Biol ; 4(1): 104, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483589

ABSTRACT

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Subject(s)
Biological Evolution , Chromosomes, Insect , Genome, Insect , Polydnaviridae/genetics , Wasps/genetics , Animals , Base Sequence , Conserved Sequence , Nudiviridae/genetics , Receptors, Odorant/genetics , Smell , Symbiosis , Synteny , Wasps/virology
13.
J Chem Phys ; 154(4): 044112, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33514080

ABSTRACT

The Hartree-Fock problem provides the conceptual and mathematical underpinning of a large portion of quantum chemistry. As efforts in quantum technology aim to enhance computational chemistry algorithms, the Hartree-Fock method, central to many other numerical approaches, is a natural target for quantum enhanced algorithms. While quantum computers and quantum simulation offer many prospects for the future of modern chemistry, the non-deterministic polynomial-complete Hartree-Fock problem is not a likely candidate. We highlight this fact from a number of perspectives including computational complexity, practical examples, and the full characterization of energy landscapes for simple systems.

14.
Mol Phylogenet Evol ; 156: 107023, 2021 03.
Article in English | MEDLINE | ID: mdl-33253830

ABSTRACT

Ichneumonoidea is one of the most diverse lineages of animals on the planet with >48,000 described species and many more undescribed. Parasitoid wasps of this superfamily are mostly beneficial insects that attack and kill other arthropods and are important for understanding diversification and the evolution of life history strategies related to parasitoidism. Further, some lineages of parasitoids within Ichneumonoidea have acquired endogenous virus elements (EVEs) that are permanently a part of the wasp's genome and benefit the wasp through host immune disruption and behavioral control. Unfortunately, understanding the evolution of viral acquisition, parasitism strategies, diversification, and host immune disruption mechanisms, is deeply limited by the lack of a robust phylogenetic framework for Ichneumonoidea. Here we design probes targeting 541 genes across 91 taxa to test phylogenetic relationships, the evolution of parasitoid strategies, and the utility of probes to capture polydnavirus genes across a diverse array of taxa. Phylogenetic relationships among Ichneumonoidea were largely well resolved with most higher-level relationships maximally supported. We noted codon use biases between the outgroups, Braconidae, and Ichneumonidae and within Pimplinae, which were largely solved through analyses of amino acids rather than nucleotide data. These biases may impact phylogenetic reconstruction and caution for outgroup selection is recommended. Ancestral state reconstructions were variable for Braconidae across analyses, but consistent for reconstruction of idiobiosis/koinobiosis in Ichneumonidae. The data suggest many transitions between parasitoid life history traits across the whole superfamily. The two subfamilies within Ichneumonidae that have polydnaviruses are supported as distantly related, providing strong evidence for two independent acquisitions of ichnoviruses. Polydnavirus capture using our designed probes was only partially successful and suggests that more targeted approaches would be needed for this strategy to be effective for surveying taxa for these viral genes. In total, these data provide a robust framework for the evolution of Ichneumonoidea.


Subject(s)
Hymenoptera/genetics , Hymenoptera/virology , Parasites/physiology , Phylogeny , Viruses/metabolism , Animals , Base Sequence , Bayes Theorem , Hymenoptera/classification , Likelihood Functions
15.
Zookeys ; 971: 1-15, 2020.
Article in English | MEDLINE | ID: mdl-33061770

ABSTRACT

For the first time in 21 years, a new genus of cardiochiline braconid wasp, Orientocardiochiles Kang & Long, gen. nov. (type species Orientocardiochiles joeburrowi Kang, sp. nov.), is discovered and described. This genus represents the ninth genus in the Oriental region. Two new species (O. joeburrowi Kang, sp. nov. and O. nigrofasciatus Long, sp. nov.) are described and illustrated, and a key to species of the genus, with detailed images, is added. Diagnostic characters of the new genus are analyzed and compared with several other cardiochiline genera to allow the genus to key out properly using an existing generic treatment. The scientific names validated by this paper and morphological data obtained from this project will be utilized and tested in the upcoming genus-level revision of the subfamily based on combined morphological and molecular data.

16.
J Chem Theory Comput ; 16(10): 6014-6026, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32786894

ABSTRACT

One route to numerically propagating quantum systems is time-dependent density functional theory (TDDFT). The application of TDDFT to a particular system's time evolution is predicated on V-representability, which we have analyzed in a previous publication. Here, we describe a newly developed solver for the scalar time-dependent Kohn-Sham potential. We present and interpret the force-balance equation central to our numerical method, describe details of its implementation, and present illustrative numerical results for one- and two-electron systems in both one-dimensional and three-dimensional grids. Innovations of our numerical implementation include the use of preconditioning when inverting the force-balance matrix and an improved propagation method obtaining the Kohn-Sham potential self-consistently at each step of the propagation. A new characterization of V-representability for one-electron systems is also included, along with possible improvements and future directions.

17.
J Chem Theory Comput ; 16(10): 6091-6097, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32833450

ABSTRACT

Simulating molecules is believed to be one of the early stage applications for quantum computers. Current state-of-the-art quantum computers are limited in size and coherence; therefore, optimizing resources to execute quantum algorithms is crucial. In this work, we develop the second quantization representation of spatial symmetries, which are then transformed to their qubit operator representation. These qubit operator representations are used to reduce the number of qubits required for simulating molecules. We present our results for various molecules and elucidate a formal connection of this work with a previous technique that analyzed generic Z2 Pauli symmetries.

18.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668948

ABSTRACT

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

19.
Rev. bras. entomol ; 64(1): e201982, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1092595

ABSTRACT

Abstract A new species of Diolcogaster (Hymenoptera: Braconidae) is described and illustrated. Additionally, its position within the recently published key to New World species of the xanthaspis species-group (to which the described Diolcogaster belongs) is provided. The gregarious larval parasitoid Diolcogaster choi sp. nov. was collected in Maringá, Paraná State, Brazil. This natural enemy was recovered from a caterpillar of Hypercompe cunigunda (Stoll, 1781) (Lepidoptera: Erebidae) that was feeding on plant of passionflower, Passiflora edulis Sims (Passifloraceae). The fauna of the xanthaspis group in the New World now includes five species, including the new species from Brazil described in this paper. Diolcogaster choi sp. nov. differs anatomically, and is morphologically diagnosed, from all other known member of the xanthaspis group of the genus Diolcogaster, to which it belongs. The species also differs in recorded host, and its DNA barcode appears to be distinctive among described Diolcogaster.

20.
Zookeys ; 890: 1-685, 2019.
Article in English | MEDLINE | ID: mdl-31798309

ABSTRACT

The descriptive taxonomic study reported here is focused on Glyptapanteles, a species-rich genus of hymenopteran parasitoid wasps. The species were found within the framework of two independent long-term Neotropical caterpillar rearing projects: northwestern Costa Rica (Área de Conservación Guanacaste, ACG) and eastern Andes, Ecuador (centered on Yanayacu Biological Station, YBS). One hundred thirty-six new species of Glyptapanteles Ashmead are described and all of them are authored by Arias-Penna. None of them was recorded in both countries; thus, 78 are from Costa Rica and the remaining 58 from Ecuador. Before this revision, the number of Neotropical described Glyptapanteles did not reach double digits. Reasonable boundaries among species were generated by integrating three datasets: Cytochrome Oxidase I (COI) gene sequencing data, natural history (host records), and external morphological characters. Each species description is accompanied by images and known geographical distribution. Characteristics such as shape, ornamentation, and location of spun Glyptapanteles cocoons were imaged as well. Host-parasitoid associations and food plants are also here published for the first time. A total of 88 species within 84 genera in 15 Lepidoptera families was encountered as hosts in the field. With respect to food plants, these wild-caught parasitized caterpillars were reared on leaves of 147 species within 118 genera in 60 families. The majority of Glyptapanteles species appeared to be relatively specialized on one family of Lepidoptera or even on some much lower level of taxonomic refinement. Those herbivores in turn are highly food-plant specialized, and once caterpillars were collected, early instars (1-3) yielded more parasitoids than later instars. Glyptapanteles jimmilleri Arias-Penna, sp. nov. is the first egg-larval parasitoid recorded within the genus, though there may be many more since such natural history requires a more focused collection of eggs. The rate of hyperparasitoidism within the genus was approximately 4% and was represented by Mesochorus spp. (Ichneumonidae). A single case of multiparasitoidism was reported, Copidosoma floridanum Ashmead (Encyrtidae) and Glyptapanteles ilarisaaksjarvi Arias-Penna, sp. nov. both parasitoid species emerged from the caterpillar of Noctuidae: Condica cupienta (Cramer). Bodyguard behavior was observed in two Glyptapanteles species: G. howelldalyi Arias-Penna, sp. nov. and G. paulhansoni Arias-Penna, sp. nov. A dichotomous key for all the new species is provided. The numerous species described here, and an equal number already reared but not formally described, signal a far greater Glyptapanteles species richness in the Neotropics than suggested by the few described previously.

SELECTION OF CITATIONS
SEARCH DETAIL
...