Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585776

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-ß1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.

2.
JAC Antimicrob Resist ; 6(2): dlae037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500518

ABSTRACT

Background: Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form. Methods: We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features. Results: The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in pncA derived from 24 231 clinical isolates. Conclusions: This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.

3.
J Antimicrob Chemother ; 79(2): 211-240, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38134888

ABSTRACT

BACKGROUND: Non-tuberculous mycobacteria (NTM) infections are increasing in incidence and associated mortality. NTM are naturally resistant to a variety of antibiotics, complicating treatment. We conducted a literature assessment on the efficacy of bedaquiline in treating NTM species in vitro and in vivo (animal models and humans); meta-analyses were performed where possible. METHOD: Four databases were searched using specific terms. Publications were included according to predefined criteria. Bedaquiline's impact on NTM in vitro, MICs and epidemiological cut-off (ECOFF) values were evaluated. A meta-analysis of bedaquiline efficacy against NTM infections in animal models was performed. Culture conversion, cure and/or relapse-free cure were used to evaluate the efficacy of bedaquiline in treating NTM infection in humans. RESULTS: Fifty studies met the inclusion criteria: 33 assessed bedaquiline's impact on NTM in vitro, 9 in animal models and 8 in humans. Three studies assessed bedaquiline's efficacy both in vitro and in vivo. Due to data paucity, an ECOFF value of 0.5 mg/mL was estimated for Mycobacterium abscessus only. Meta-analysis of animal studies showed a 1.86× reduction in bacterial load in bedaquiline-treated versus no treatment within 30 days. In humans, bedaquiline-including regimens were effective in treating NTM extrapulmonary infection but not pulmonary infection. CONCLUSIONS: Bedaquiline demonstrated strong antibacterial activity against various NTM species and is a promising drug to treat NTM infections. However, data on the genomic mutations associated with bedaquiline resistance were scarce, preventing statistical analyses for most mutations and NTM species. Further studies are urgently needed to better inform treatment strategies.


Subject(s)
Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
4.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577680

ABSTRACT

Approximately 50% of advanced melanomas harbor activating BRAF V600E mutations that are sensitive to BRAF inhibition. However, the duration of the response to BRAF inhibitors (BRAFi) has been limited due to the development of acquired resistance, which is preceded by recruitment of immunosuppressive myeloid cells and regulatory T cells (T regs ). While the addition of MAPK/ERK kinase 1 inhibitors (MEKi) prolongs therapeutic response to BRAF inhibition, most patients still develop resistance. Using a Braf V600E/+ /Pten -/- graft mouse model of melanoma, we now show that the addition of the methyl ester of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (C-Me) to the BRAFi vemurafenib analog PLX4720 at resistance significantly reduces tumor burden. Dual treatment remodels the BRAFi resistant-tumor microenvironment (TME), reducing infiltration of T regs and tumor associated macrophages (TAMs), and attenuates immunosuppressive cytokine production. For the first time, we characterize myeloid populations using scRNA-seq in BRAFi-resistant tumors and demonstrate that restoration of therapeutic response is associated with significant changes in immune-activated myeloid subset representation. Collectively, these studies suggest that C-Me inhibits acquired resistance to BRAFi. Use of C-Me in combination with other therapies may both inhibit melanoma growth and enhance therapeutic responsiveness more broadly.

5.
J Invest Dermatol ; 143(10): 1886-1895.e10, 2023 10.
Article in English | MEDLINE | ID: mdl-37028702

ABSTRACT

Morphea is an inflammatory fibrotic disorder of the skin that has been likened to systemic sclerosis (SSc). We sought to examine the molecular landscape of morphea by examining lesional skin gene expression and blood biomarkers and comparing the gene expression profiles with those from site-matched nonlesional and SSc lesional skin. We found the morphea transcriptome is dominated by IFN-γ-mediated T helper 1 immune dysregulation, with a relative paucity of fibrosis pathways. Specifically, expression profiles of morphea skin clustered with the SSc inflammatory subset and were distinct from the those of SSc fibroproliferative subset. Unaffected morphea skin also differed from unaffected SSc skin because it did not exhibit pathological gene expression signatures. Examination of downstream IFN-γ-mediated chemokines, CXCL9 and CXCL10, revealed increased transcription in the skin but not in circulation. In contrast to transcriptional activity, CXCL9 was elevated in serum and was associated with active, widespread cutaneous involvement. Taken together, these results indicate that morphea is a skin-directed process characterized by T helper 1 immune-mediated dysregulation, which contrasts with fibrotic signatures and systemic transcriptional changes associated with SSc. The similarity between morphea and the inflammatory subset of SSc on transcriptional profiling indicates that therapies under development for this subset of SSc are also promising for treatment of morphea.


Subject(s)
Scleroderma, Localized , Scleroderma, Systemic , Humans , Scleroderma, Localized/genetics , Scleroderma, Localized/diagnosis , Transcriptome , Skin/pathology , Fibrosis
6.
Expert Opin Biol Ther ; 23(4): 325-339, 2023 04.
Article in English | MEDLINE | ID: mdl-36964674

ABSTRACT

INTRODUCTION: Systemic sclerosis (SSc) is a severe, and often life-threatening, autoimmune disease, which causes inflammation and fibrosis of the skin and internal organs. There are currently limited effective therapeutic options for patients with SSc. There are recently completed and ongoing phase 2 and 3 studies looking at biologic therapies for SSc that target the underlying pathogenesis of the disease. AREAS COVERED: The purpose of this review is to describe completed and ongoing trials of different biologic therapies for the treatment of SSc. This review discusses biologic therapy directed at multiple pathways that are believed to contribute to inflammation and fibrosis in SSc including T cell, B cell, direct cytokines, and JAK signaling. Data presented is based on authors' expertise of completed and ongoing trials. EXPERT OPINION: Tocilizumab and rituximab have supporting data to advocate for use in early SSc. Data from tocilizumab showed preservation of forced vital capacity (FVC) and beneficial effects on global composite measure. Recent data from different trials with rituximab in SSc (with and without interstitial lung disease) show beneficial effects on skin and FVC with good tolerability. We highlight the molecular heterogeneity in early SSc phenotype and the need to account for this in future trials.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Rituximab/therapeutic use , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/complications , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/etiology , Fibrosis , Inflammation/drug therapy
7.
Cochrane Database Syst Rev ; 3: CD013765, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36915032

ABSTRACT

BACKGROUND: Recurrence of atrial tachyarrhythmias (ATa) following catheter ablation for atrial fibrillation (AF) is a common problem. Antiarrhythmic drugs have been used shortly after ablation in an attempt to maintain sinus rhythm, particularly Class I and III agents. However, it still needs to be established if the use of Class I or III antiarrhythmic medications, or both, reduce the risk of recurrence of ATa. OBJECTIVES: To assess the effects of oral Class I and III antiarrhythmic drugs versus control (standard medical therapy without Class I or III antiarrhythmics, or placebo) for maintaining sinus rhythm in people undergoing catheter ablation for AF. SEARCH METHODS: We systematically searched CENTRAL, MEDLINE, Embase, Web of Science Core Collection, and two clinical trial registers without restrictions on language or date to 5 August 2022. SELECTION CRITERIA: We sought published, unpublished, and ongoing parallel-design, randomised controlled trials (RCTs) involving adult participants undergoing ablation for AF, with subsequent comparison of Class I and/or III antiarrhythmic use versus control (standard medical therapy or non-Class I and/or III antiarrhythmic use). DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane and performed meta-analyses with risk ratios (RR) and Peto odds ratios (Peto OR). Our primary outcomes were recurrence of atrial tachyarrhythmias; adverse events: thromboembolic events; adverse events: myocardial infarction; adverse events: new diagnosis of heart failure; and adverse events: requirement for one or more hospitalisations for atrial tachyarrhythmia. Our secondary outcomes were: all-cause mortality; and requirement for one or more repeat ablations. Where possible, we performed comparison analysis by Class I and/or III antiarrhythmic and divided follow-up periods for our primary outcome. We performed comprehensive assessments of risk of bias and certainty of evidence applying the GRADE methodology. MAIN RESULTS: We included nine RCTs involving a total of 3269 participants. Participants were on average 59.3 years old; 71.0% were male; and 72.9% and 27.4% had paroxysmal and persistent AF, respectively. Class I and/or III antiarrhythmics may reduce recurrence of ATa at 0 to 3 months postablation (risk ratio (RR) 0.74, 95% confidence interval (CI) 0.59 to 0.94, 8 trials, 3046 participants, low-certainty evidence) and likely reduce recurrence at > 3 to 6 months, our a priori primary time point (RR 0.85, 95% CI 0.78 to 0.93, 5 trials, 2591 participants, moderate-certainty evidence). Beyond six months the evidence is very uncertain, and the benefit of antiarrhythmics may not persist (RR 1.14, 95% CI 0.84 to 1.55, 4 trials, 2244 participants, very low-certainty evidence). The evidence suggests that Class I and/or III antiarrhythmics may not increase the risk of thromboembolic events, myocardial infarction, all-cause mortality, or requirement for repeat ablation, at 0 to 3, > 3 to 6, and > 6 months (where data were available; low- to very low-certainty evidence). The use of Class I and/or III antiarrhythmics postablation likely reduces hospitalisations for ATa by approximately 57% at 0 to 3 months (RR 0.43, 95% CI 0.28 to 0.64, moderate-certainty evidence). No data were available beyond three months. No data were available on new diagnoses of heart failure. Fewer data were available for Class I and III antiarrhythmics individually. Based on only one and two trials (n = 125 to 309), Class I antiarrhythmics may have little effect on recurrence of ATa at 0 to 3, > 3 to 6, and > 6 months (RR 0.88, 95% CI 0.64 to 1.20, 2 trials, 309 participants; RR 0.54, 95% CI 0.25 to 1.19, 1 trial, 125 participants; RR 0.87, 95% CI 0.57 to 1.32, 1 trial, 125 participants; low-certainty evidence throughout); requirement for hospitalisation for ATa at 0 to 3 months (low-certainty evidence); or requirement for repeat ablation at 0 to 3 months (low-certainty evidence). No data were available for thromboembolic events, myocardial infarction, new diagnosis of heart failure, or all-cause mortality at any time points, or hospitalisation or repeat ablation beyond three months. Class III antiarrhythmics may have little effect on recurrence of ATa at up to 3 months and at > 3 to 6 months (RR 0.76, 95% CI 0.50 to 1.16, 4 trials, 599 participants, low-certainty evidence; RR 0.82, 95% CI 0.62 to 1.09, 2 trials, 318 participants, low-certainty evidence), and beyond 6 months one trial reported a possible increase in recurrence of ATa (RR 1.95, 95% CI 1.29 to 2.94, 1 trial, 112 participants, low-certainty evidence). Class III antiarrhythmics likely reduce hospitalisations for ATa at 0 to 3 months (RR 0.40, 95% CI 0.26 to 0.63, moderate-certainty evidence), and may have little effect on all-cause mortality (low- to very low-certainty evidence). The effect of Class III antiarrhythmics on thromboembolic events and requirement for repeat ablation was uncertain (very low-certainty evidence for both outcomes). No data were available for myocardial infarction or new diagnosis of heart failure at any time point, outcomes other than recurrence beyond 6 months, or for hospitalisation and repeat ablation > 3 to 6 months. We assessed the majority of included trials as at low or unclear risk of bias. One trial reported an error in the randomisation process, raising the potential risk of selection bias; most of the included trials were non-blinded; and two trials were at high risk of attrition bias. AUTHORS' CONCLUSIONS: We found evidence to suggest that the use of Class I and/or III antiarrhythmics up to 3 months after ablation is associated with a reduced recurrence of ATa 0 to 6 months after ablation, which may not persist beyond 6 months, and an immediate reduction in hospitalisation for ATa 0 to 3 months after ablation. The evidence suggests there is no difference in rates of all-cause mortality, thromboembolic events, or myocardial infarction between Class I and/or III antiarrhythmics versus control.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Failure , Myocardial Infarction , Adult , Female , Humans , Male , Middle Aged , Anti-Arrhythmia Agents/adverse effects , Atrial Fibrillation/drug therapy , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Heart Failure/drug therapy
8.
J Invest Dermatol ; 143(7): 1138-1146.e12, 2023 07.
Article in English | MEDLINE | ID: mdl-36708947

ABSTRACT

Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.


Subject(s)
Dermatitis , Scleroderma, Localized , Humans , Animals , Mice , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Up-Regulation , Ligands , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Fibrosis , Inflammation , Fibroblasts/metabolism , Bleomycin/toxicity , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism
9.
Arthritis Care Res (Hoboken) ; 75(2): 307-316, 2023 02.
Article in English | MEDLINE | ID: mdl-34533286

ABSTRACT

OBJECTIVE: Among individuals with systemic sclerosis (SSc) randomized to cyclophosphamide (CYC) (n = 34) or hematopoietic stem cell transplantation (HSCT) (n = 33), we examined longitudinal trends of clinical, pulmonary function, and quality of life measures while accounting for the influence of early failures on treatment comparisons. METHODS: Assuming that data were missing at random, mixed-effects regression models were used to estimate longitudinal trends for clinical measures when comparing treatment groups. Results were compared to observed means and to longitudinal trends estimated from shared parameter models, assuming that data were missing not at random. Longitudinal trends for SSc intrinsic molecular subsets defined by baseline gene expression signatures (normal-like, inflammatory, and fibroproliferative signatures) were also studied. RESULTS: Available observed means for pulmonary function tests appeared to improve over time in both arms. However, after accounting for participant loss, forced vital capacity in HSCT recipients increased by 0.77 percentage points/year but worsened by -3.70/year for CYC (P = 0.004). Similar results were found for diffusing capacity for carbon monoxide and quality of life indicators. Results for both analytic models were consistent. HSCT recipients in the inflammatory (n = 20) and fibroproliferative (n = 20) subsets had superior long-term trends compared to CYC for pulmonary and quality of life measures. HSCT was also superior for modified Rodnan skin thickness scores in the fibroproliferative subset. For the normal-like subset (n = 22), superiority of HSCT was less apparent. CONCLUSION: Longitudinal trends estimated from 2 statistical models affirm the efficacy of HSCT over CYC in severe SSc. Failure to account for early loss of participants may distort estimated clinical trends over the long term.


Subject(s)
Hematopoietic Stem Cell Transplantation , Scleroderma, Localized , Scleroderma, Systemic , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immunosuppressive Agents/therapeutic use , Quality of Life , Transplantation, Autologous , Cyclophosphamide/therapeutic use , Scleroderma, Systemic/diagnosis , Scleroderma, Systemic/drug therapy , Scleroderma, Localized/drug therapy , Treatment Outcome
10.
Rheumatology (Oxford) ; 62(SI): SI114-SI124, 2023 02 06.
Article in English | MEDLINE | ID: mdl-35946522

ABSTRACT

OBJECTIVES: Prior work demonstrates that co-cultured macrophages and fibroblasts from patients with SSc engage in reciprocal activation. However, the mechanism by which these cell types communicate and contribute to fibrosis and inflammation in SSc is unknown. METHODS: Fibroblasts were isolated from skin biopsies obtained from 7 SSc patients or 6 healthy age and gender-matched control subjects following written informed consent. Human donor-derived macrophages were cultured with exosomes isolated from control or SSc fibroblasts for an additional 48 h. Macrophages were immunophenotyped using flow cytometry, qRT-PCR and multiplex. For mutual activation studies, exosome-activated macrophages were co-cultured with SSc or healthy fibroblasts using Transwells. RESULTS: Macrophages activated with dermal fibroblast-derived exosomes from SSc patients upregulated surface expression of CD163, CD206, MHC Class II and CD16 and secreted increased levels of IL-6, IL-10, IL-12p40 and TNF compared with macrophages incubated with healthy control fibroblasts (n = 7, P < 0.05). Exosome-stimulated macrophages and SSc fibroblasts engaged in reciprocal activation, as production of collagen and fibronectin was significantly increased in SSc fibroblasts receiving signals from SSc exosome-stimulated macrophages (n = 7, P < 0.05). CONCLUSION: In this work, we demonstrate for the first time that human SSc dermal fibroblasts mediate macrophage activation through exosomes. Our findings suggest that macrophages and fibroblasts engage in cross-talk in SSc skin, resulting in mutual activation, inflammation, and extracellular matrix (ECM) deposition. Collectively, these studies implicate macrophages and fibroblasts as cooperative mediators of fibrosis in SSc and suggest therapeutic targeting of both cell types may provide maximal benefit in ameliorating disease in SSc patients.


Subject(s)
Exosomes , Scleroderma, Systemic , Humans , Macrophage Activation , Scleroderma, Systemic/pathology , Skin/pathology , Fibrosis , Cells, Cultured , Inflammation/metabolism , Fibroblasts/metabolism
12.
Arthritis Care Res (Hoboken) ; 75(7): 1469-1480, 2023 07.
Article in English | MEDLINE | ID: mdl-35997480

ABSTRACT

OBJECTIVE: Systemic sclerosis (SSc) patients are classified according to degree of skin fibrosis (limited and diffuse cutaneous [lc and dc]) and serum autoantibodies. We undertook the present multicenter study to determine whether intrinsic subset (IS) classification based upon skin gene expression yields additional valuable clinical information. METHODS: SSc patients and healthy participants (HPs) were classified into Normal-like, Limited, Fibroproliferative, and Inflammatory ISs using a previously trained classifier. Clinical data were obtained (serum autoantibodies, pulmonary function testing, modified Rodnan skin thickness scores [mRSS], and high-resolution chest computed tomography [HRCT]). Statistical analyses were performed to compare patients classified by IS, traditional cutaneous classification, and serum autoantibodies. RESULTS: A total of 223 participants (165 SSc [115 dcSSc and 50 lcSSc] and 58 HPs) were classified. Inflammatory IS patients had higher mRSS (22.1 ± 9.9; P < 0.001) than other ISs and dcSSc patients (19.4 ± 9.4; P = 0.05) despite similar disease duration (median [interquartile range] months 14.9 [19.9] vs. 18.4 [31.6]; P = 0.48). In multivariable modeling, no significant association between mRSS and RNA polymerase III (P = 0.07) or anti-topoisomerase I (Scl-70) (P = 0.09) was found. Radiographic interstitial lung disease (ILD) was more prevalent in Fibroproliferative IS compared with other ISs (91%; P = 0.04) with similar prevalence between lcSSc and dcSSc (67% vs. 76%; P = 0.73). Positive Scl-70 antibody was the strongest ILD predictor (P < 0.001). Interestingly, all lcSSc/Fibroproliferative patients demonstrated radiographic ILD. CONCLUSIONS: Classification by IS identifies patients with distinct clinical phenotypes versus traditional cutaneous or autoantibody classification. IS classification identifies subgroups of SSc patients with more radiographic ILD (Fibroproliferative), higher mRSS (Inflammatory), and milder phenotype (Normal-like) and may provide additional clinically useful information to current SSc classification systems.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Fibrosis , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/pathology , Skin/diagnostic imaging , Skin/pathology , Autoantibodies , Phenotype
13.
JCI Insight ; 7(24)2022 12 22.
Article in English | MEDLINE | ID: mdl-36355434

ABSTRACT

Here, the efficacy of abatacept in patients with early diffuse systemic sclerosis (dcSSc) was analyzed to test the hypothesis that patients in the inflammatory intrinsic subset would show the most significant clinical improvement. Eighty-four participants with dcSSc were randomized to receive abatacept or placebo for 12 months. RNA-Seq was performed on 233 skin paired biopsies at baseline and at 3 and 6 months. Improvement was defined as a 5-point or more than 20% change in modified Rodnan skin score (mRSS) between baseline and 12 months. Samples were assigned to intrinsic gene expression subsets (inflammatory, fibroproliferative, or normal-like subsets). In the abatacept arm, change in mRSS was most pronounced for the inflammatory and normal-like subsets relative to the placebo subset. Gene expression for participants on placebo remained in the original molecular subset, whereas inflammatory participants treated with abatacept had gene expression that moved toward the normal-like subset. The Costimulation of the CD28 Family Reactome Pathway decreased in patients who improved on abatacept and was specific to the inflammatory subset. Patients in the inflammatory subset had elevation of the Costimulation of the CD28 Family pathway at baseline relative to that of participants in the fibroproliferative and normal-like subsets. There was a correlation between improved ΔmRSS and baseline expression of the Costimulation of the CD28 Family pathway. This study provides an example of precision medicine in systemic sclerosis clinical trials.


Subject(s)
Scleroderma, Diffuse , Scleroderma, Systemic , Humans , Abatacept/pharmacology , Abatacept/therapeutic use , CD28 Antigens/metabolism , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Scleroderma, Systemic/metabolism , Scleroderma, Diffuse/drug therapy , Scleroderma, Diffuse/metabolism , Scleroderma, Diffuse/pathology , Skin/pathology
14.
Rheumatology (Oxford) ; 62(1): 19-28, 2022 12 23.
Article in English | MEDLINE | ID: mdl-35751592

ABSTRACT

OBJECTIVES: Four intrinsic molecular subsets (inflammatory, fibroproliferative, limited, normal-like) have previously been identified in SSc and are characterized by unique gene expression signatures and pathways. The intrinsic subsets have been linked to improvement with specific therapies. Here, we investigated associations between baseline demographics and intrinsic molecular subsets in a meta-analysis of published datasets. METHODS: Publicly available gene expression data from skin biopsies of 311 SSc patients measured by DNA microarray were classified into the intrinsic molecular subsets. RNA-sequencing data from 84 participants from the ASSET trial were used as a validation cohort. Baseline clinical demographics and intrinsic molecular subsets were tested for statistically significant associations. RESULTS: Males were more likely to be classified in the fibroproliferative subset (P = 0.0046). SSc patients who identified as African American/Black were 2.5 times more likely to be classified as fibroproliferative compared with White/Caucasian patients (P = 0.0378). ASSET participants sera positive for anti-RNA pol I and RNA pol III autoantibodies were enriched in the inflammatory subset (P = 5.8 × 10-5, P = 9.3 × 10-5, respectively), while anti-Scl-70 was enriched in the fibroproliferative subset. Mean modified Rodnan Skin Score (mRSS) was statistically higher in the inflammatory and fibroproliferative subsets compared with normal-like (P = 0.0027). The average disease duration for inflammatory subset was less than fibroproliferative and normal-like intrinsic subsets (P = 8.8 × 10-4). CONCLUSIONS: We identified multiple statistically significant differences in baseline demographics between the intrinsic subsets that may represent underlying features of disease pathogenesis (e.g. chronological stages of fibrosis) and have implications for treatments that are more likely to work in certain SSc populations.


Subject(s)
Scleroderma, Systemic , Male , Humans , Scleroderma, Systemic/pathology , Genomics , Transcriptome , Oligonucleotide Array Sequence Analysis , Skin/pathology , RNA
15.
Arthritis Rheumatol ; 74(7): 1245-1256, 2022 07.
Article in English | MEDLINE | ID: mdl-35212485

ABSTRACT

OBJECTIVE: The development of precision therapeutics for systemic sclerosis (SSc) has been hindered by the lack of models that accurately mimic the disease in vitro. This study was undertaken to design and test a self-assembled skin equivalent (saSE) system that recapitulates the cross-talk between macrophages and fibroblasts in cutaneous fibrosis. METHODS: SSc-derived dermal fibroblasts (SScDFs) and normal dermal fibroblasts (NDFs) were cultured with CD14+ monocytes from SSc patients or healthy controls to allow de novo stroma formation. Monocyte donor-matched plasma was introduced at week 3 prior to seeding keratinocytes to produce saSE with a stratified epithelium. Tissue was characterized by immunohistochemical staining, atomic force microscopy, enzyme-linked immunosorbent assay, and quantitative reverse transcriptase-polymerase chain reaction. RESULTS: Stroma synthesized de novo from NDFs and SScDFs supported a fully stratified epithelium to form saSE. A thicker and stiffer dermis was generated by saSE with SScDFs, and more interleukin-6 and transforming growth factor ß (TGFß) was secreted by saSE with SScDFs compared to saSE with NDFs, regardless of the inclusion of monocytes. Tissue with SSc monocytes and plasma had amplified dermal thickness and stiffness relative to control tissue. Viable CD163+ macrophages were found within the stroma of saSE 5 weeks after seeding. Additionally, SSc saSE contained greater numbers of CD163+ and CD206+ macrophages compared to control saSE. TGFß blockade inhibited stromal stiffness to a greater extent in SSc saSE compared to control saSE. CONCLUSION: These data suggest reciprocal activation between macrophages and fibroblasts that increases tissue thickness and stiffness, which is dependent in part on TGFß activation. The saSE system may serve as a platform for preclinical therapeutic testing and for molecular characterization of SSc skin pathology through recapitulation of the interactions between macrophages and fibroblasts.


Subject(s)
Macrophage Activation , Scleroderma, Systemic , Cells, Cultured , Fibroblasts/metabolism , Fibrosis , Humans , Scleroderma, Systemic/pathology , Skin/pathology , Transforming Growth Factor beta/metabolism
16.
J Med Biogr ; 30(1): 6-14, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32216519

ABSTRACT

Henry Goodeve was appointed assistant surgeon to the Bengal Principality of the East India Company in 1831 and in 1835 was appointed assistant to Dr MJ Bramley, who was the newly appointed Superintendent of the Calcutta Medical School. Later that year, Goodeve was appointed Professor of Medicine and Anatomy and in 1845 accompanied four Indian students to London where they underwent further training at University College. Returning to Calcutta two years later, he was appointed Professor of Midwifery and retired in 1853, returning to England. Goodeve was appointed Senior Physician to the Rentkioi Hospital at the end of the Crimean war in 1855. After this he spent the rest of his life in Bristol. He built a large mansion and became a magistrate and was on numerous committees. He had many publications including Hints on Children in India that went to 14 editions and was the co-editor of one of the Calcutta Medical Journals.


Subject(s)
Medicine , Physicians , Child , History, 20th Century , Humans , India , Schools, Medical , Universities
17.
J Clin Microbiol ; 60(1): e0190721, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34757831

ABSTRACT

Pyrazinamide is an important component of both drug-susceptible and drug-resistant tuberculosis treatment regimens. Although approximately 50% of rifampin-resistant isolates are also resistant to pyrazinamide, pyrazinamide susceptibility testing is not routinely performed due to the challenging nature of the assay. We investigated the diagnostic accuracy of genotypic and phenotypic methods and explored the occurrence of pyrazinamide heteroresistance. We assessed pyrazinamide susceptibility among 358 individuals enrolled in the South African EXIT-RIF cohort using Sanger and targeted deep sequencing (TDS) of the pncA gene, whole-genome sequencing (WGS), and phenotypic drug susceptibility testing. We calculated the diagnostic accuracy of the different methods and investigated the prevalence and clinical impact of pncA heteroresistance. True pyrazinamide susceptibility status was assigned to each isolate using the Köser classification and expert rules. We observed 100% agreement across genotypic methods for detection of pncA fixed mutations; only TDS confidently identified three isolates (0.8%) with minor variants. For the 355 (99.2%) isolates that could be assigned true pyrazinamide status with confidence, phenotypic DST had a sensitivity of 96.5% (95% confidence interval [CI], 93.8 to 99.3%) and specificity of 100% (95% CI, 100 to 100%), both Sanger sequencing and WGS had a sensitivity of 97.1% (95% CI, 94.6 to 99.6%) and specificity of 97.8% (95% CI, 95.7 to 99.9%), and TDS had sensitivity of 98.8% (95% CI, 97.2 to 100%) and specificity of 97.8% (95% CI, 95.7 to 99.9%). We demonstrate high sensitivity and specificity for pyrazinamide susceptibility testing among all assessed genotypic methods. The prevalence of pyrazinamide heteroresistance in Mycobacterium tuberculosis isolates was lower than that identified for other first-line drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Amidohydrolases/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Genomics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , Pyrazinamide/pharmacology , Pyrazinamide/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology
18.
Lancet Infect Dis ; 22(2): 183-195, 2022 02.
Article in English | MEDLINE | ID: mdl-34756186

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant is highly transmissible and spreading globally, including in populations with high vaccination rates. We aimed to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community. METHODS: Between Sept 13, 2020, and Sept 15, 2021, 602 community contacts (identified via the UK contract-tracing system) of 471 UK COVID-19 index cases were recruited to the Assessment of Transmission and Contagiousness of COVID-19 in Contacts cohort study and contributed 8145 upper respiratory tract samples from daily sampling for up to 20 days. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. We analysed transmission risk by vaccination status for 231 contacts exposed to 162 epidemiologically linked delta variant-infected index cases. We compared viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections. Primary outcomes for the epidemiological analysis were to assess the secondary attack rate (SAR) in household contacts stratified by contact vaccination status and the index cases' vaccination status. Primary outcomes for the viral load kinetics analysis were to detect differences in the peak viral load, viral growth rate, and viral decline rate between participants according to SARS-CoV-2 variant and vaccination status. FINDINGS: The SAR in household contacts exposed to the delta variant was 25% (95% CI 18-33) for fully vaccinated individuals compared with 38% (24-53) in unvaccinated individuals. The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (median 101 days [IQR 74-120]) than for uninfected individuals (64 days [32-97], p=0·001). SAR among household contacts exposed to fully vaccinated index cases was similar to household contacts exposed to unvaccinated index cases (25% [95% CI 15-35] for vaccinated vs 23% [15-31] for unvaccinated). 12 (39%) of 31 infections in fully vaccinated household contacts arose from fully vaccinated epidemiologically linked index cases, further confirmed by genomic and virological analysis in three index case-contact pairs. Although peak viral load did not differ by vaccination status or variant type, it increased modestly with age (difference of 0·39 [95% credible interval -0·03 to 0·79] in peak log10 viral load per mL between those aged 10 years and 50 years). Fully vaccinated individuals with delta variant infection had a faster (posterior probability >0·84) mean rate of viral load decline (0·95 log10 copies per mL per day) than did unvaccinated individuals with pre-alpha (0·69), alpha (0·82), or delta (0·79) variant infections. Within individuals, faster viral load growth was correlated with higher peak viral load (correlation 0·42 [95% credible interval 0·13 to 0·65]) and slower decline (-0·44 [-0·67 to -0·18]). INTERPRETATION: Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. Host-virus interactions early in infection may shape the entire viral trajectory. FUNDING: National Institute for Health Research.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Viral Load/physiology , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Vaccination , Vaccination Coverage
19.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502134

ABSTRACT

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/genetics , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules/metabolism , Datasets as Topic , Dendritic Cells/metabolism , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Lectins, C-Type/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mendelian Randomization Analysis , Nasopharynx/immunology , Nasopharynx/pathology , Nasopharynx/virology , RNA-Seq , Receptors, Cell Surface/metabolism , Severity of Illness Index , Single-Cell Analysis
20.
Tuberculosis (Edinb) ; 130: 102122, 2021 09.
Article in English | MEDLINE | ID: mdl-34517268

ABSTRACT

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major cause of death worldwide. Diverse genotypes have been demonstrated to drive the epidemiology of drug resistant (DR-) TB globally. Currently, there is limited knowledge on the genotypes and transmission dynamics of M. tuberculosis in Zambia. This study aimed to describe the genotypes of DR-TB from the Copperbelt and Northern regions of Zambia. Molecular typing tools of insertion sequence 6110-restriction fragment length polymorphism (IS6110-RFLP) and spacer oligonucleotide typing (spoligotyping) were applied. We demonstrate that diverse genotypes are associated with DR-TB in Zambia. The predominant genotype was lineage 4; other strains belonged to lineage 2 and 3. Genotypes previously identified as driving the epidemiology of drug susceptible TB have been identified as drivers of DR-TB. Genotyping analysis showed clustering of strains among patients from different regions of the country; suggesting that DR-TB is widespread. Molecular findings combined with phenotypic and epidemiologic findings play a critical role in identifying circulating genotypes and possible transmission chains. Clustering of drug resistant strains was demonstrated to be 48% and 86% according to IS6110-RFLP and spoligotyping, respectively. However, gaps in clinical and demographic data skew the interpretation, and call for data collection policy improvements.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant/epidemiology , Adolescent , Adult , Antitubercular Agents/pharmacology , Bacterial Typing Techniques , DNA Transposable Elements , Female , Genetic Variation , Genotype , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Typing , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Polymorphism, Restriction Fragment Length , Tuberculosis, Multidrug-Resistant/microbiology , Young Adult , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...