Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 25(11): 2499-509, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18779259

ABSTRACT

Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.


Subject(s)
Coleoptera/genetics , Genome, Insect , Genome, Mitochondrial , Amino Acid Sequence , Animals , Anticodon , Base Composition , Base Sequence , Codon, Initiator , Cyclooxygenase 1/genetics , DNA , Evolution, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Ribosomal , RNA, Transfer, Ser/genetics , Sequence Alignment
2.
Insect Mol Biol ; 16(2): 239-52, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17316330

ABSTRACT

The Anabrus simplex is a swarming plague orthopteran found in western North America. The genome is 15 766 bp in length and genome organization follows the ancestral insect gene arrangement. atp6 lacked any readily identifiable stop codon. Examination of mRNA secondary structure for this gene suggested a stem/loop-mediated mRNA post-transcriptional processing to liberate a mature atp6 mRNA with a complete stop codon produced by polyadenylation. Comparison of similar protein with protein gene boundaries in other insect species reveal a general mechanism for mRNA excision and provide further supporting evidence for post-transcriptional mRNA processing in mitochondrial genomes. The A + T-rich region, or control region, was sequenced for 55 A. simplex individuals from 12 different populations. Variance studies between these individuals show that the A + T-rich region contains significant phylogenetic signal to be used in population studies.


Subject(s)
Genes, Mitochondrial , Genetic Variation , Genome, Insect , Orthoptera/genetics , Regulatory Sequences, Nucleic Acid , AT Rich Sequence , Amino Acid Sequence , Animals , Base Sequence , Genetic Code , Molecular Sequence Data , RNA, Transfer/genetics , Sequence Analysis, DNA
3.
Mol Phylogenet Evol ; 21(1): 72-85, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11603938

ABSTRACT

Relationships among 69 species of Hawaiian Platynini, a monophyletic beetle radiation, was investigated based on evidence from five data partitions, comprising mitochondrial and nuclear DNA sequences (cytochrome oxidase II, 624 bp; cytochrome b, 783 bp; 28S rDNA, 668 bp; wingless; 441 bp) and morphology (206 features of external and internal anatomy). Results from individual and combined data analyses generally support the monophyly of three putative divisions within Platynini in Hawaii: Division 0 (Colpocaccus species group), Division 1 (Blackburnia species group), and Division 2 (Metromenus species group). However, relationships within and among these three divisions differ from previous morphological hypotheses. An extensive series of sensitivity analyses was performed to assess robustness of recovered clades under a variety of weighted parsimony conditions. Sensitivity analyses support the monophyly of Divisions 0 and 1, but were equivocal for the monophyly of Division 2. A phylogeny based on combined data suggests at least four independent losses/reductions of platynine flight wings. The combined analysis provides corroboration for biogeographic hypotheses, including (1) colonization of Kauai by Hawaiian Platynini with subsequent dispersal and colonization along the island chain from Oahu to Maui Nui to Hawaii Island and (2) incongruent area relationships among Eastern Molokai, West Maui, and Haleakala for two species triplets.


Subject(s)
Coleoptera/genetics , Drosophila Proteins , Phylogeny , Animals , Cell Nucleus/genetics , Coleoptera/anatomy & histology , Coleoptera/classification , Cytochrome b Group/genetics , DNA/chemistry , DNA/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Evolution, Molecular , Genetic Variation , Insect Proteins/genetics , Molecular Sequence Data , Proto-Oncogene Proteins/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Wnt1 Protein
4.
Syst Biol ; 47(1): 134-8, 1998 Mar.
Article in English | MEDLINE | ID: mdl-12064233
5.
Syst Biol ; 46(1): 1-68, 1997 Mar.
Article in English | MEDLINE | ID: mdl-11975347

ABSTRACT

Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of congruence. Phylogenetic trees were generated by parsimony analysis, and clade robustness was evaluated by branch length, Bremer support, percentage of extra steps required to force paraphyly, and sensitivity analysis using the following parameters: gap weights, morphological character weights, methods of data set combination, removal of key taxa, and alignment region. The following are monophyletic under most or all combinations of parameter values: Holometabola, Polyphaga, Megaloptera + Raphidioptera, Neuroptera, Hymenoptera, Trichoptera, Lepidoptera, Amphiesmenoptera (Trichoptera + Lepidoptera), Siphonaptera, Siphonaptera + Mecoptera, Strepsiptera, Diptera, and Strepsiptera + Diptera (Halteria). Antliophora (Mecoptera + Diptera + Siphonaptera + Strepsiptera), Mecopterida (Antliophora + Amphiesmenoptera), and Hymenoptera + Mecopterida are supported in the majority of total evidence analyses. Mecoptera may be paraphyletic because Boreus is often placed as sister group to the fleas; hence, Siphonaptera may be subordinate within Mecoptera. The 18S sequences for Priacma (Coleoptera: Archostemata), Colpocaccus (Coleoptera: Adephaga), Agulla (Raphidioptera), and Corydalus (Megaloptera) are nearly identical, and Neuropterida are monophyletic only when those two beetle sequences are removed from the analysis. Coleoptera are therefore paraphyletic under almost all combinations of parameter values. Halteria and Amphiesmenoptera have high Bremer support values and long branch lengths. The data do not support placement of Strepsiptera outside of Holometabola nor as sister group to Coleoptera. We reject the notion that the monophyly of Halteria is due to long branch attraction because Strepsiptera and Diptera do not have the longest branches and there is phylogenetic congruence between molecules, across the entire parameter space, and between morphological and molecular data.


Subject(s)
DNA, Ribosomal/genetics , Insecta/classification , Insecta/genetics , Phylogeny , Animals , Base Sequence , DNA, Ribosomal/chemistry , Insecta/anatomy & histology , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...