Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Surg ; 214(4): 610-615, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28666582

ABSTRACT

BACKGROUND: We hypothesized that clonidine and propranolol would increase VEGF and VEGF-receptor expression and promote lung healing following severe trauma and chronic stress. METHODS: Sprague-Dawley rats were subjected to lung contusion (LC), lung contusion/hemorrhagic shock (LCHS), or lung contusion/hemorrhagic shock/daily restraint stress (LCHS/CS). Clonidine and propranolol were administered daily. On day seven, lung VEGF, VEGFR-1, VEGFR-2, and HMGB1 were assessed by PCR. Lung injury was assessed by light microscopy (*p < 0.05). RESULTS: Clonidine increased VEGF expression following LCHS (43%*) and LCHS/CS (46%*). Clonidine increased VEGFR-1 and R-2 expression following LCHS/CS (203%* and 47%*, respectively). Clonidine decreased HMGB1 and TNF-alpha expression following LCHS/CS (22%* and 58%*, respectively.) Clonidine decreased inflammatory cell infiltration and total Lung Injury Score following LCHS/CS. Propranolol minimally affected VEGF and did not improve lung healing. CONCLUSIONS: Clonidine increased VEGF and VEGF-receptor expression, decreased HMGB1 expression, decreased lung inflammation, and improved lung tissue repair.


Subject(s)
Clonidine/pharmacology , Lung Injury/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , HMGB1 Protein/metabolism , Inflammation/drug therapy , Propranolol/pharmacology , Pulmonary Edema/drug therapy , Rats , Rats, Sprague-Dawley , Restraint, Physical , Tumor Necrosis Factor-alpha/metabolism , Wound Healing/drug effects
2.
J Surg Res ; 210: 15-21, 2017 04.
Article in English | MEDLINE | ID: mdl-28457321

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1 and VEGFR-2) regulate vascular permeability and endothelial cell survival. We hypothesized that hemorrhagic shock (HS) and chronic stress (CS) would increase expression of lung VEGF and its receptors, potentiating pulmonary edema in lung tissue. MATERIALS AND METHODS: Male Sprague-Dawley rats aged 8-9 wk were randomized: naïve control, lung contusion (LC), LC followed by HS (LCHS), and LCHS with CS in a restraint cylinder for 2 h/d (LCHS/CS). Animals were sacrificed on days 1 and 7. Expressions of lung VEGF, VEGFR-1, and VEGFR-2 were determined by polymerase chain reaction. Lung Injury Score (LIS) was graded on light microscopy by inflammatory cell counts, interstitial edema, pulmonary edema, and alveolar integrity (range: 0 = normal; 8 = severe injury). RESULTS: Seven days after LC, lung VEGF and VEGFR-1 were increased, and lung tissue healed (LIS: 0.8 ± 0.8). However, 7 d after LCHS and LCHS/CS, lung VEGF and VEGFR-1 expressions were decreased. VEGFR-2 was also decreased after LCHS/CS. LIS was elevated 7 d after LCHS and LCHS/CS (6.5 ± 1.0 and 8.2 ± 0.8). Increased LIS after LCHS and LCHS/CS was because of higher inflammatory cell counts, increased interstitial edema, and loss of alveolar integrity, whereas pulmonary edema was unchanged. CONCLUSIONS: Elevation of lung VEGF and VEGFR-1 expressions after LC alone was associated with healing of injured lung tissue. Expressions of VEGF, VEGFR-1, and VEGFR-2 were reduced after LCHS and LCHS/CS, and injured lung tissue did not heal. Persistent lung injury after severe trauma was because of inflammation rather than pulmonary edema.


Subject(s)
Lung Injury/metabolism , Pulmonary Edema/etiology , Shock, Hemorrhagic/metabolism , Stress, Psychological/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Biomarkers/metabolism , Chronic Disease , Lung Injury/complications , Male , Pulmonary Edema/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Shock, Hemorrhagic/complications , Stress, Psychological/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...