Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
3.
Gerontol Geriatr Med ; 8: 23337214221083473, 2022.
Article in English | MEDLINE | ID: mdl-35392162

ABSTRACT

Millions of Americans aged 65+ are socially isolated and millions more report feeling lonely. Social isolation and loneliness in older adults were compounded by stay-at-home orders and other COVID-19 prevention measures. Although many Americans experienced no difficulties transitioning to the use of electronic devices as their primary means of communication and connection, some older adults were not similarly able to espouse this shift. Our aim was to reduce the impact of social isolation on older adults, increase their comfort in expressing feelings of loneliness, and assist them in acquiring technology skills and accessing telehealth and community supports. Participants received wellness calls for conversation, resource access and technology-based support. Most participants reported decreased loneliness and increased connectedness after the calls; half reported increased ease in expressing their feelings. Programs that provide phone-based support for older adults may reduce loneliness and increase social connectedness.

4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193983

ABSTRACT

Researchers have long debated the degree to which Native American land use altered landscapes in the Americas prior to European colonization. Human-environment interactions in southern South America are inferred from new pollen and charcoal data from Laguna El Sosneado and their comparison with high-resolution paleoenvironmental records and archaeological/ethnohistorical information at other sites along the eastern Andes of southern Argentina and Chile (34-52°S). The records indicate that humans, by altering ignition frequency and the availability of fuels, variously muted or amplified the effects of climate on fire regimes. For example, fire activity at the northern and southern sites was low at times when the climate and vegetation were suitable for burning but lacked an ignition source. Conversely, abundant fires set by humans and infrequent lightning ignitions occurred during periods when warm, dry climate conditions coincided with ample vegetation (i.e., fuel) at midlatitude sites. Prior to European arrival, changes in Native American demography and land use influenced vegetation and fire regimes locally, but human influences were not widely evident until the 16th century, with the introduction of nonnative species (e.g., horses), and then in the late 19th century, as Euro-Americans targeted specific resources to support local and national economies. The complex interactions between past climate variability, human activities, and ecosystem dynamics at the local scale are overlooked by approaches that infer levels of land use simply from population size or that rely on regionally composited data to detect drivers of past environmental change.


Subject(s)
Anthropogenic Effects , Ecosystem , Climate Change , Humans , South America
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190115, 2020 03 16.
Article in English | MEDLINE | ID: mdl-31983331

ABSTRACT

Forest dynamics are driven by top-down changes in climate and bottom-up positive (destabilizing) and negative (stabilizing) biophysical feedbacks involving disturbance and biotic interactions. When positive feedbacks prevail, the resulting self-propagating changes can potentially shift the system into a new state, even in the absence of climate change. Conversely, negative feedbacks help maintain a dynamic equilibrium that allows communities to recover their pre-disturbance characteristics. We examine palaeoenvironmental records from temperate forests to assess the nature of long-term stability and regime shifts under a broader range of environmental forcings than can be observed at present. Forest histories from northwestern USA, Patagonia, Tasmania and New Zealand show long-term trajectories that were governed by (i) the biophysical template, (ii) characteristics of climate and disturbance, (iii) historical legacies that condition the ecological capacity to respond to subsequent disturbances, and (iv) thresholds that act as irreversible barriers. Attention only to current forest conditions overlooks the significance of history in creating path dependency, the importance of individual extreme events, and the inherent feedbacks that force an ecosystem into reorganization. A long-time perspective on ecological resilience helps guide conservation strategies that focus on environmental preservation as well as identify vulnerable species and ecosystems to future climate change. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Fires , Forests , Trees , Argentina , New Zealand , Northwestern United States , Tasmania
6.
Conserv Biol ; 32(1): 84-97, 2018 02.
Article in English | MEDLINE | ID: mdl-28574184

ABSTRACT

Conservation efforts to protect forested landscapes are challenged by climate projections that suggest substantial restructuring of vegetation and disturbance regimes in the future. In this regard, paleoecological records that describe ecosystem responses to past variations in climate, fire, and human activity offer critical information for assessing present landscape conditions and future landscape vulnerability. We illustrate this point drawing on 8 sites in the northwestern United States, New Zealand, Patagonia, and central and southern Europe that have undergone different levels of climate and land-use change. These sites fall along a gradient of landscape conditions that range from nearly pristine (i.e., vegetation and disturbance shaped primarily by past climate and biophysical constraints) to highly altered (i.e., landscapes that have been intensely modified by past human activity). Position on this gradient has implications for understanding the role of natural and anthropogenic disturbance in shaping ecosystem dynamics and assessments of present biodiversity, including recognizing missing or overrepresented species. Dramatic vegetation reorganization occurred at all study sites as a result of postglacial climate variations. In nearly pristine landscapes, such as those in Yellowstone National Park, climate has remained the primary driver of ecosystem change up to the present day. In Europe, natural vegetation-climate-fire linkages were broken 6000-8000 years ago with the onset of Neolithic farming, and in New Zealand, natural linkages were first lost about 700 years ago with arrival of the Maori people. In the U.S. Northwest and Patagonia, the greatest landscape alteration occurred in the last 150 years with Euro-American settlement. Paleoecology is sometimes the best and only tool for evaluating the degree of landscape alteration and the extent to which landscapes retain natural components. Information on landscape-level history thus helps assess current ecological change, clarify management objectives, and define conservation strategies that seek to protect both natural and cultural elements.


Subject(s)
Conservation of Natural Resources , Ecosystem , Climate Change , Europe , Humans , New Zealand , Northwestern United States
7.
For Ecol Manage ; 388: 120-131, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28860677

ABSTRACT

Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.

8.
Proc Natl Acad Sci U S A ; 114(18): 4582-4590, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416662

ABSTRACT

Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland-urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas burned by wildfire through fire suppression and fuels management. These strategies are inadequate to address a new era of western wildfires. In contrast, policies that promote adaptive resilience to wildfire, by which people and ecosystems adjust and reorganize in response to changing fire regimes to reduce future vulnerability, are needed. Key aspects of an adaptive resilience approach are (i) recognizing that fuels reduction cannot alter regional wildfire trends; (ii) targeting fuels reduction to increase adaptation by some ecosystems and residential communities to more frequent fire; (iii) actively managing more wild and prescribed fires with a range of severities; and (iv) incentivizing and planning residential development to withstand inevitable wildfire. These strategies represent a shift in policy and management from restoring ecosystems based on historical baselines to adapting to changing fire regimes and from unsustainable defense of the wildland-urban interface to developing fire-adapted communities. We propose an approach that accepts wildfire as an inevitable catalyst of change and that promotes adaptive responses by ecosystems and residential communities to more warming and wildfire.


Subject(s)
Climate Change , Forests , Wildfires/prevention & control , Humans , North America
9.
Ecology ; 98(3): 678-687, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27935641

ABSTRACT

Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities.


Subject(s)
Pinus/physiology , Wildfires , Ecosystem , Fires , Introduced Species , New Zealand
10.
PLoS One ; 10(4): e0124439, 2015.
Article in English | MEDLINE | ID: mdl-25885810

ABSTRACT

Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.


Subject(s)
Ecosystem , Environment , Pinus/physiology , Conservation of Natural Resources , Forecasting , Fossils
11.
Proc Natl Acad Sci U S A ; 111(51): E5545-54, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25489077

ABSTRACT

Forest/steppe boundaries are among the most dynamic ecosystems on Earth and are highly vulnerable to changes in climate and land use. In this study we examine the postglacial history of the Patagonian forest/steppe ecotone (41-43°S) to better understand its sensitivity to past variations in climate, disturbance, and human activity before European colonization. We present regional trends in vegetation and biomass burning, as detected by generalized additive models fitted to seven pollen and charcoal records, and compare the results with other paleoenvironmental data, as well as archeological and ecological information to (i) estimate postglacial fire trends at regional scales, (ii) assess the evolution of climate-vegetation-fire linkages over the last 18,000 calibrated (cal) years B.P., and (iii) evaluate the role of humans in altering pre-European landscapes and fire regimes. Pollen and charcoal data indicate that biomass burning was relatively low during warm/dry steppe-dominated landscapes in the late glacial/Early Holocene transition and increased as more humid conditions favored forest development after ca. 10,000 cal years B.P. Postglacial fire activity was thus limited by fuel availability associated with sparse vegetation cover rather than by suitable climate conditions. In contrast to extensive burning by European settlers, variations in indigenous population densities were not associated with fluctuations in regional or watershed-scale fire occurrence, suggesting that climate-vegetation-fire linkages in northern Patagonia evolved with minimal or very localized human influences before European settlement.


Subject(s)
Climate Change , Fires , Argentina , Chile , Ecosystem , Forests , Humans
12.
PLoS One ; 9(11): e111328, 2014.
Article in English | MEDLINE | ID: mdl-25372150

ABSTRACT

Human-caused forest transitions are documented worldwide, especially during periods when land use by dense agriculturally-based populations intensified. However, the rate at which prehistoric human activities led to permanent deforestation is poorly resolved. In the South Island, New Zealand, the arrival of Polynesians c. 750 years ago resulted in dramatic forest loss and conversion of nearly half of native forests to open vegetation. This transformation, termed the Initial Burning Period, is documented in pollen and charcoal records, but its speed has been poorly constrained. High-resolution chronologies developed with a series of AMS radiocarbon dates from two lake sediment cores suggest the shift from forest to shrubland occurred within decades rather than centuries at drier sites. We examine two sites representing extreme examples of the magnitude of human impacts: a drier site that was inherently more vulnerable to human-set fires and a wetter, less burnable site. The astonishing rate of deforestation at the hands of small transient populations resulted from the intrinsic vulnerability of the native flora to fire and from positive feedbacks in post-fire vegetation recovery that increased landscape flammability. Spatially targeting burning in highly-flammable seral vegetation in forests rarely experiencing fire was sufficient to create an alternate fire-prone stable state. The New Zealand example illustrates how seemingly stable forest ecosystems can experience rapid and permanent conversions. Forest loss in New Zealand is among the fastest ecological transitions documented in the Holocene; yet equally rapid transitions can be expected in present-day regions wherever positive feedbacks support alternate fire-inhibiting, fire-prone stable states.


Subject(s)
Ecosystem , Forests , Human Activities , Chronology as Topic , Geography , Humans , Models, Theoretical , New Zealand
13.
Front Plant Sci ; 5: 785, 2014.
Article in English | MEDLINE | ID: mdl-25657652

ABSTRACT

Fire is a key ecological process affecting vegetation dynamics and land cover. The characteristic frequency, size, and intensity of fire are driven by interactions between top-down climate-driven and bottom-up fuel-related processes. Disentangling climatic from non-climatic drivers of past fire regimes is a grand challenge in Earth systems science, and a topic where both paleoecology and ecological modeling have made substantial contributions. In this manuscript, we (1) review the use of sedimentary charcoal as a fire proxy and the methods used in charcoal-based fire history reconstructions; (2) identify existing techniques for paleoecological modeling; and (3) evaluate opportunities for coupling of paleoecological and ecological modeling approaches to better understand the causes and consequences of past, present, and future fire activity.

15.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22331892

ABSTRACT

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Subject(s)
Climate , Global Warming , Ice Cover , Temperature , Atmosphere/analysis , Biological Evolution , Carbon Dioxide/metabolism , Ecosystem , Geography , Methane/metabolism , Models, Theoretical , Monte Carlo Method , Oxygen/metabolism , Principal Component Analysis , Seawater , Time Factors , Water Movements
16.
Ecology ; 92(3): 590-601, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21608468

ABSTRACT

The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison of vegetation histories between nutrient-limited ultramafic substrates and terrain that is more fertile. Pollen and charcoal records spanning up to 15000 years from ultramafic settings reveal a distinctly different vegetation history compared to other soil types. In non-ultramafic settings, the dominant trees and shrubs shifted in elevation in response to Holocene climate variations resulting in compositional and structural changes, whereas on ultramafic substrates changes were primarily structural, not compositional. Fire activity was similar through most of the Holocene with the exception of declines over the last 4000 years on ultramafic substrates, likely due to the reduction of understory fuels and cooler wetter conditions than in the middle Holocene. These results suggest that the tree and shrub distributions were more responsive to past climate changes on non-ultramafic substrates compared to those on ultramafic substrates. The combination of these dynamics may help explain high levels of plant diversity in the Klamath Mountains and provide insights for managing these complex ecosystems.


Subject(s)
Biodiversity , Soil , Trees/physiology , California , Climate Change , Fires , Geological Phenomena
17.
Proc Natl Acad Sci U S A ; 107(50): 21343-8, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21149690

ABSTRACT

Humans have altered natural patterns of fire for millennia, but the impact of human-set fires is thought to have been slight in wet closed-canopy forests. In the South Island of New Zealand, Polynesians (Maori), who arrived 700-800 calibrated years (cal y) ago, and then Europeans, who settled ∼150 cal y ago, used fire as a tool for forest clearance, but the structure and environmental consequences of these fires are poorly understood. High-resolution charcoal and pollen records from 16 lakes were analyzed to reconstruct the fire and vegetation history of the last 1,000 y. Diatom, chironomid, and element concentration data were examined to identify disturbance-related limnobiotic and biogeochemical changes within burned watersheds. At most sites, several high-severity fire events occurred within the first two centuries of Maori arrival and were often accompanied by a transformation in vegetation, slope stability, and lake chemistry. Proxies of past climate suggest that human activity alone, rather than unusually dry or warm conditions, was responsible for this increased fire activity. The transformation of scrub to grassland by Europeans in the mid-19th century triggered further, sometimes severe, watershed change, through additional fires, erosion, and the introduction of nonnative plant species. Alteration of natural disturbance regimes had lasting impacts, primarily because native forests had little or no previous history of fire and little resilience to the severity of burning. Anthropogenic burning in New Zealand highlights the vulnerability of closed-canopy forests to novel disturbance regimes and suggests that similar settings may be less resilient to climate-induced changes in the future.


Subject(s)
Climate , Ecosystem , Fires/history , Geography , Animals , Charcoal , Fresh Water , History, Ancient , Humans , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL
...