Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 72(11): 6914-22, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16950903

ABSTRACT

Escherichia coli is the most completely characterized prokaryotic model organism and one of the dominant indicator organisms for food and water quality testing, yet comparatively little is known about the structure of E. coli populations in their various hosts. The diversities of E. coli populations isolated from the feces of three host species (human, cow, and horse) were compared by two subtyping methods: ribotyping (using HindIII) and antibiotic resistance analysis (ARA). The sampling effort required to obtain a representative sample differed by host species, as E. coli diversity was consistently greatest in horses, followed by cattle, and was lowest in humans. The diversity of antibiotic resistance patterns isolated from individuals was consistently greater than the diversity of ribotypes. E. coli populations in individuals sampled monthly, over a 7- to 8-month period, were highly variable in terms of both ribotypes and ARA phenotypes. In contrast, E. coli populations in cattle and humans were stable over an 8-h period. Following the cessation of antibiotic therapy, the E. coli population in the feces of one human experienced a rapid and substantial shift, from a multiply antibiotic-resistant phenotype associated with a particular ribotype to a relatively antibiotic-susceptible phenotype associated with a different ribotype. The high genetic diversity of E. coli populations, differences in diversity among hosts, and temporal variability all indicate complex population dynamics that influence the usefulness of E. coli as a water quality indicator and its use in microbial source tracking studies.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli/classification , Escherichia coli/isolation & purification , Feces/microbiology , Genetic Variation , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Escherichia coli/drug effects , Escherichia coli/genetics , Genotype , Horses , Humans , Microbial Sensitivity Tests/methods , Phenotype , Ribotyping , Species Specificity
2.
Appl Environ Microbiol ; 71(6): 3041-8, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15933000

ABSTRACT

Fecal coliforms and enterococci are indicator organisms used worldwide to monitor water quality. These bacteria are used in microbial source tracking (MST) studies, which attempt to assess the contribution of various host species to fecal pollution in water. Ideally, all strains of a given indicator organism (IO) would experience equal persistence (maintenance of culturable populations) in water; however, some strains may have comparatively extended persistence outside the host, while others may persist very poorly in environmental waters. Assessment of the relative contribution of host species to fecal pollution would be confounded by differential persistence of strains. Here, freshwater and saltwater mesocosms, including sediments, were inoculated with dog feces, sewage, or contaminated soil and were incubated under conditions that included natural stressors such as microbial predators, radiation, and temperature fluctuations. Persistence of IOs was measured by decay rates (change in culturable counts over time). Decay rates were influenced by IO, inoculum, water type, sediment versus water column location, and Escherichia coli strain. Fecal coliform decay rates were significantly lower than those of enterococci in freshwater but were not significantly different in saltwater. IO persistence according to mesocosm treatment followed the trend: contaminated soil > wastewater > dog feces. E. coli ribotyping demonstrated that certain strains were more persistent than others in freshwater mesocosms, and the distribution of ribotypes sampled from mesocosm waters was dissimilar from the distribution in fecal material. These results have implications for the accuracy of MST methods, modeling of microbial populations in water, and efficacy of regulatory standards for protection of water quality.


Subject(s)
Enterobacteriaceae/growth & development , Enterococcus/growth & development , Feces/microbiology , Fresh Water/microbiology , Geologic Sediments/microbiology , Seawater/microbiology , Animals , Biomarkers , Colony Count, Microbial , Culture Media , Dogs , Enterobacteriaceae/isolation & purification , Enterococcus/isolation & purification , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/isolation & purification , Ribotyping , Tropical Climate
3.
J Water Health ; 1(4): 209-23, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15382725

ABSTRACT

Several commonly used statistical methods for fingerprint identification in microbial source tracking (MST) were examined to assess the effectiveness of pattern-matching algorithms to correctly identify sources. Although numerous statistical methods have been employed for source identification, no widespread consensus exists as to which is most appropriate. A large-scale comparison of several MST methods, using identical fecal sources, presented a unique opportunity to assess the utility of several popular statistical methods. These included discriminant analysis, nearest neighbour analysis, maximum similarity and average similarity, along with several measures of distance or similarity. Threshold criteria for excluding uncertain or poorly matched isolates from final analysis were also examined for their ability to reduce false positives and increase prediction success. Six independent libraries used in the study were constructed from indicator bacteria isolated from fecal materials of humans, seagulls, cows and dogs. Three of these libraries were constructed using the rep-PCR technique and three relied on antibiotic resistance analysis (ARA). Five of the libraries were constructed using Escherichia coli and one using Enterococcus spp. (ARA). Overall, the outcome of this study suggests a high degree of variability across statistical methods. Despite large differences in correct classification rates among the statistical methods, no single statistical approach emerged as superior. Thresholds failed to consistently increase rates of correct classification and improvement was often associated with substantial effective sample size reduction. Recommendations are provided to aid in selecting appropriate analyses for these types of data.


Subject(s)
Data Interpretation, Statistical , Feces/microbiology , Statistics as Topic/methods , Animals , Birds , Cattle , Discriminant Analysis , Dogs , Enterobacteriaceae/isolation & purification , Humans , Microbial Sensitivity Tests , Polymerase Chain Reaction , Water Microbiology
4.
Water Res ; 36(17): 4273-82, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12420932

ABSTRACT

Bacteria such as fecal coliforms are used as indicators of fecal pollution in natural waters. These bacteria are found in the feces of most wild and domestic animals and thus provide no information as to the source of fecal contamination, yet identification of indicator bacteria sources allows improved risk assessment, remediation, and total daily maximum load (TDML) assessment of environmental waters. This bacterial source tracking study was initiated in order to identify the dominant source(s) of fecal contamination in the urban watershed of Stevenson Creek in Clearwater, Florida. Five sites that represent areas where routine monitoring has previously shown high levels of fecal coliforms were sampled over 7 months. Fecal coliforms were enumerated by membrane filtration, and antibiotic resistance analysis was used to "fingerprint" a subset of randomly selected isolates and statistically match them to fingerprints of fecal coliforms from known sources (the library). A field test of the classification accuracy of the library was carried out by isolating fecal coliforms from the soil and waters surrounding a failing onsite wastewater treatment and disposal system (OSTDS). The vast majority of the isolates were classified into the human category. The major sources of fecal pollution in Stevenson Creek over the course of the study were wild animal, human, and, to a lesser extent, dog. Overall, wild animal feces were identified as the dominant source when fecal coliform levels were high, but when fecal coliform levels were low, the dominant source was identified as human. The results of this study demonstrate that the sources of fecal indicator bacteria within one urban watershed can vary substantially over temporal and spatial distances.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterobacteriaceae/classification , Enterobacteriaceae/drug effects , Feces/microbiology , Fresh Water/microbiology , Water Microbiology , Animals , Cattle , Dogs , Florida , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...