Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(12): e9679, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590336

ABSTRACT

The relationship between the spawning stock size and subsequent number of recruits is a central concept in fisheries ecology. The influence of habitat selection of spawning individuals on the stock-recruitment relationship is poorly known. Here we explore how each of four different spawner behaviors might influence the stock-recruitment relationship and estimates of its parameters in the two most commonly used stock-recruitment functions (Beverton-Holt and Ricker). Using simulated stock-recruitment data generated by four different spawner behaviors applied to multiple discrete habitats, we show that when spawners were distributed proportionally to local carrying capacities, there was small or no bias in estimated recruitment and stock-recruitment parameters. For an ideal free distribution of spawners, larger bias in the estimates of recruitment and stock-recruitment parameters was obtained, whereas a random and a stepwise spawner behavior introduced the largest bias. Using stock-recruitment data corresponding to a "realistic" range of population densities and adding measurement error (20%-60%) to the simulated stock-recruitment data generated larger variation in the estimation bias than what was introduced by the spawner behavior. Thus, for exploited stocks at low population density and where spawning stock size and recruitment cannot be observed perfectly, partial observation of the possible spawner abundance range and measurement error might be of higher concern for management.

2.
Proc Biol Sci ; 288(1956): 20210671, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34344182

ABSTRACT

Animal migrations track predictable seasonal patterns of resource availability and suitable thermal habitat. As climate change alters this 'energy landscape', some migratory species may struggle to adapt. We examined how climate variability influences movements, thermal habitat selection and energy intake by juvenile Pacific bluefin tuna (Thunnus orientalis) during seasonal foraging migrations in the California Current. We tracked 242 tuna across 15 years (2002-2016) with high-resolution archival tags, estimating their daily energy intake via abdominal warming associated with digestion (the 'heat increment of feeding'). The poleward extent of foraging migrations was flexible in response to climate variability, allowing tuna to track poleward displacements of thermal habitat where their standard metabolic rates were minimized. During a marine heatwave that saw temperature anomalies of up to +2.5°C in the California Current, spatially explicit energy intake by tuna was approximately 15% lower than average. However, by shifting their mean seasonal migration approximately 900 km poleward, tuna remained in waters within their optimal temperature range and increased their energy intake. Our findings illustrate how tradeoffs between physiology and prey availability structure migration in a highly mobile vertebrate, and suggest that flexible migration strategies can buffer animals against energetic costs associated with climate variability and change.


Subject(s)
Animal Migration , Tuna , Animals , Climate Change , Ecosystem , Temperature
3.
Sci Rep ; 9(1): 4918, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894557

ABSTRACT

Atlantic bluefin tuna (Thunnus thynnus) are highly migratory fish with a contemporary range spanning the North Atlantic Ocean. Bluefin tuna populations have undergone severe decline and the status of the fish within each population remains uncertain. Improved biological knowledge, particularly of natural mortality and rates of mixing of the western (GOM) and eastern (Mediterranean) populations, is key to resolving the current status of the Atlantic bluefin tuna. We evaluated the potential for acoustic tags to yield empirical estimates of mortality and migration rates for long-lived, highly migratory species such as Atlantic bluefin tuna. Bluefin tuna tagged in the Gulf of St. Lawrence (GSL) foraging ground (2009-2016) exhibited high detection rates post release, with 91% crossing receiver lines one year post tagging, 61% detected after year two at large, with detections up to ~1700 days post deployment. Acoustic detections per individual fish ranged from 3 to 4759 receptions. A spatially-structured Bayesian mark recapture model was applied to the acoustic detection data for Atlantic bluefin tuna electronically tagged in the GSL to estimate the rate of instantaneous annual natural mortality. We report a median estimate of 0.10 yr-1 for this experiment. Our results demonstrate that acoustic tags can provide vital fisheries independent estimates for life history parameters critical for improving stock assessment models.


Subject(s)
Longevity/physiology , Population Dynamics/trends , Reproduction/physiology , Telemetry/methods , Tuna/physiology , Acoustics , Animal Migration/physiology , Animals , Atlantic Ocean , Bayes Theorem , Ecosystem , Female , Male , Mediterranean Sea
4.
Sci Adv ; 1(8): e1400270, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26601248

ABSTRACT

Pacific bluefin tuna (Thunnus orientalis) are highly migratory apex marine predators that inhabit a broad thermal niche. The energy needed for migration must be garnered by foraging, but measuring energy intake in the marine environment is challenging. We quantified the energy intake of Pacific bluefin tuna in the California Current using a laboratory-validated model, the first such measurement in a wild marine predator. Mean daily energy intake was highest off the coast of Baja California, Mexico in summer (mean ± SD, 1034 ± 669 kcal), followed by autumn when Pacific bluefin achieve their northernmost range in waters off northern California (944 ± 579 kcal). Movements were not always consistent with maximizing energy intake: the Pacific bluefin move out of energy rich waters both in late summer and winter, coincident with rising and falling water temperatures, respectively. We hypothesize that temperature-related physiological constraints drive migration and that Pacific bluefin tuna optimize energy intake within a range of optimal aerobic performance.

5.
Fish Fish (Oxf) ; 15(1): 65-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26430388

ABSTRACT

Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

6.
PLoS One ; 8(8): e71552, 2013.
Article in English | MEDLINE | ID: mdl-23990959

ABSTRACT

Worldwide, sturgeons (Acipenseridae) are among the most endangered fishes due to habitat degradation, overfishing, and inherent life history characteristics (long life span, late maturation, and infrequent spawning). As most sturgeons are anadromous, a considerable portion of their life history occurs in estuarine and marine environments where they may encounter unique threats (e.g., interception in non-target fisheries). Of the 16 marine-oriented species, 12 are designated as Critically Endangered by the IUCN, and these include species commercially harvested. We review important research tools and techniques (tagging, electronic tagging, genetics, microchemistry, observatory) and discuss the comparative utility of these techniques to investigate movements, migrations, and life-history characteristics of sturgeons. Examples are provided regarding what the applications have revealed regarding movement and migration and how this information can be used for conservation and management. Through studies that include Gulf (Acipenser oxyrinchus desotoi) and Green Sturgeon (A. medirostris), we illustrate what is known about well-studied species and then explore lesser-studied species. A more complete picture of migration is available for North American sturgeon species, while European and Asian species, which are among the most endangered sturgeons, are less understood. We put forth recommendations that encourage the support of stewardship initiatives to build awareness and provide key information for population assessment and monitoring.


Subject(s)
Fishes/genetics , Fishes/physiology , Acoustics , Animal Migration , Animals , Conservation of Natural Resources , Ecosystem , Environmental Monitoring/methods , Female , Fisheries , Fishes/metabolism , Genetic Techniques , Life Cycle Stages , Male , Remote Sensing Technology , Telemetry
7.
Evol Appl ; 2(3): 415-37, 2009 Aug.
Article in English | MEDLINE | ID: mdl-25567889

ABSTRACT

Size-selective mortality caused by fishing can impose strong selection on harvested fish populations, causing evolution in important life-history traits. Understanding and predicting harvest-induced evolutionary change can help maintain sustainable fisheries. We investigate the evolutionary sustainability of alternative management regimes for lacustrine brook charr (Salvelinus fontinalis) fisheries in southern Canada and aim to optimize these regimes with respect to the competing objectives of maximizing mean annual yield and minimizing evolutionary change in maturation schedules. Using a stochastic simulation model of brook charr populations consuming a dynamic resource, we investigate how harvesting affects brook charr maturation schedules. We show that when approximately 5% to 15% of the brook charr biomass is harvested, yields are high, and harvest-induced evolutionary changes remain small. Intensive harvesting (at approximately >15% of brook charr biomass) results in high average yields and little evolutionary change only when harvesting is restricted to brook charr larger than the size at 50% maturation probability at the age of 2 years. Otherwise, intensive harvesting lowers average yield and causes evolutionary change in the maturation schedule of brook charr. Our results indicate that intermediate harvesting efforts offer an acceptable compromise between avoiding harvest-induced evolutionary change and securing high average yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...