Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Biomed Eng ; 7(11): 1455-1472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37550422

ABSTRACT

In patients with breast cancer, lower bone mineral density increases the risk of bone metastasis. Although the relationship between bone-matrix mineralization and tumour-cell phenotype in breast cancer is not well understood, mineralization-induced rigidity is thought to drive metastatic progression via increased cell-adhesion forces. Here, by using collagen-based matrices with adjustable intrafibrillar mineralization, we show that, unexpectedly, matrix mineralization dampens integrin-mediated mechanosignalling and induces a less proliferative stem-cell-like phenotype in breast cancer cells. In mice with xenografted decellularized physiological bone matrices seeded with human breast tumour cells, the presence of bone mineral reduced tumour growth and upregulated a gene-expression signature that is associated with longer metastasis-free survival in patients with breast cancer. Our findings suggest that bone-matrix changes in osteogenic niches regulate metastatic progression in breast cancer and that in vitro models of bone metastasis should integrate organic and inorganic matrix components to mimic physiological and pathologic mineralization.


Subject(s)
Breast Neoplasms , Calcinosis , Mammary Neoplasms, Animal , Humans , Mice , Animals , Female , Bone Matrix/pathology , Integrins , Breast Neoplasms/pathology , Calcification, Physiologic/physiology , Collagen
2.
ACS Appl Bio Mater ; 6(8): 3117-3130, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37498226

ABSTRACT

P-glycoprotein (P-gp) is a promiscuous small molecule transporter whose overexpression in cancer is associated with multidrug resistance (MDR). In these instances, anticancer drugs can select for P-gp-overexpressing cells, leading to cancer recurrence with an MDR phenotype. To avoid selection for MDR cancers and inform individual patient treatment plans, it is critical to noninvasively identify P-gp-overexpressing tumors prior to administration of chemotherapy. We report the facile free radical copolymerization of quinidine, a competitive inhibitor of P-gp, and acrylic acid to generate multiplexed polymeric P-gp-targeted imaging agents with tunable quinidine content. Copolymer targeting was demonstrated in a nude mouse xenograft model. In xenografts overexpressing P-gp, copolymer distribution was enhanced over two-fold compared to the negative control of poly(acrylic acid) regardless of quinidine content. In contrast, accumulation of the copolymers in xenografts lacking P-gp was equivalent to poly(acrylic acid). This work forms the foundation for a unique approach toward the phenotype-specific noninvasive imaging of MDR tumors and is the first in vivo demonstration of copolymer accumulation through the active targeting of P-gp.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Quinidine/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B/pharmacology , Polymers/pharmacology
3.
Cancer Res ; 83(2): 219-238, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36413141

ABSTRACT

Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE: Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Animals , Mice , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgens , Mitosis
4.
PLoS One ; 17(7): e0270474, 2022.
Article in English | MEDLINE | ID: mdl-35881611

ABSTRACT

Understanding the ecological niche of some fishes is complicated by their frequent use of a broad range of food resources and habitats across space and time. Little is known about Broad Whitefish (Coregonus nasus) ecological niches in Arctic landscapes even though they are an important subsistence species for Alaska's Indigenous communities. We investigated the foraging ecology and habitat use of Broad Whitefish via stable isotope analyses of muscle and liver tissue and otoliths from mature fish migrating in the Colville River within Arctic Alaska. The range of δ13C (-31.8- -21.9‰) and δ15N (6.6-13.1‰) across tissue types and among individuals overlapped with isotope values previously observed in Arctic lakes and rivers, estuaries, and nearshore marine habitat. The large range of δ18O (4.5-10.9‰) and δD (-237.6- -158.9‰) suggests fish utilized a broad spectrum of habitats across elevational and latitudinal gradients. Cluster analysis of muscle δ13C', δ15N, δ18O, and δD indicated that Broad Whitefish occupied four different foraging niches that relied on marine and land-based (i.e., freshwater and terrestrial) food sources to varying degrees. Most individuals had isotopic signatures representative of coastal freshwater habitat (Group 3; 25%) or coastal lagoon and delta habitat (Group 1; 57%), while individuals that mainly utilized inland freshwater (Group 4; 4%) and nearshore marine habitats (Group 2; 14%) represented smaller proportions. Otolith microchemistry confirmed that individuals with more enriched muscle tissue δ13C', δD, and δ18O tended to use marine habitats, while individuals that mainly used freshwater habitats had values that were less enriched. The isotopic niches identified here represent important foraging habitats utilized by Broad Whitefish. To preserve access to these diverse habitats it will be important to limit barriers along nearshore areas and reduce impacts like roads and climate change on natural flow regimes. Maintaining these diverse connected habitats will facilitate long-term population stability, buffering populations from future environmental and anthropogenic perturbations.


Subject(s)
Ecosystem , Salmonidae , Alaska , Animals , Carbon Isotopes/analysis , Lakes , Nitrogen Isotopes/analysis , Salmonidae/physiology
5.
PLoS One ; 17(5): e0259921, 2022.
Article in English | MEDLINE | ID: mdl-35499986

ABSTRACT

Conservation of Arctic fish species is challenging partly due to our limited ability to track fish through time and space, which constrains our understanding of life history diversity and lifelong habitat use. Broad Whitefish (Coregonus nasus) is an important subsistence species for Alaska's Arctic Indigenous communities, yet little is known about life history diversity, migration patterns, and freshwater habitat use. Using laser ablation Sr isotope otolith microchemistry, we analyzed Colville River Broad Whitefish 87Sr/86Sr chronologies (n = 61) to reconstruct movements and habitat use across the lives of individual fish. We found evidence of at least six life history types, including three anadromous types, one semi-anadromous type, and two nonanadromous types. Anadromous life history types comprised a large proportion of individuals sampled (collectively, 59%) and most of these (59%) migrated to sea between ages 0-2 and spent varying durations at sea. The semi-anadromous life history type comprised 28% of samples and entered marine habitat as larvae. Nonanadromous life history types comprised the remainder (collectively, 13%). Otolith 87Sr/86Sr data from juvenile and adult freshwater stages suggest that habitat use changed in association with age, seasons, and life history strategies. This information on Broad Whitefish life histories and habitat use across time and space will help managers and conservation planners better understand the risks of anthropogenic impacts and help conserve this vital subsistence resource.


Subject(s)
Life History Traits , Salmonidae , Alaska , Animals , Ecosystem , Strontium Isotopes
6.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33168727

ABSTRACT

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Nitroquinolines/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Aging/drug effects , Aging/pathology , Aging/physiology , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/pharmacology , DNA/biosynthesis , DNA Damage/physiology , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Neoplasm , Drug Synergism , Enzyme Inhibitors/administration & dosage , Humans , Mad2 Proteins/metabolism , Mice , Mutagenesis , Neoplasms/enzymology , Neoplasms/pathology , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
7.
Permafr Periglac Process ; 31(1): 110-127, 2020.
Article in English | MEDLINE | ID: mdl-32194312

ABSTRACT

Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km2 study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

8.
Biomaterials ; 224: 119489, 2019 12.
Article in English | MEDLINE | ID: mdl-31546097

ABSTRACT

While ductal carcinoma in situ (DCIS) is known as a precursor lesion to most invasive breast carcinomas, the mechanisms underlying this transition remain enigmatic. DCIS is typically diagnosed by the mammographic detection of microcalcifications (MC). MCs consisting of non-stoichiometric hydroxyapatite (HA) mineral are frequently associated with malignant disease, yet it is unclear whether HA can actively promote malignancy. To investigate this outstanding question, we compared phenotypic outcomes of breast cancer cells cultured in control or HA-containing poly(lactide-co-glycolide) (PLG) scaffolds. Exposure to HA mineral in scaffolds increased the expression of pro-tumorigenic interleukin-8 (IL-8) among transformed but not benign cells. Notably, MCF10DCIS.com cells cultured in HA scaffolds adopted morphological changes associated with increased invasiveness and exhibited increased motility that were dependent on IL-8 signaling. Moreover, MCF10DCIS.com xenografts in HA scaffolds displayed evidence of enhanced malignant progression relative to xenografts in control scaffolds. These experimental findings were supported by a pathological analysis of clinical DCIS specimens, which correlated the presence of MCs with increased IL-8 staining and ductal proliferation. Collectively, our work suggests that HA mineral may stimulate malignancy in preinvasive DCIS cells and validate PLG scaffolds as useful tools to study cell-mineral interactions.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Durapatite/pharmacology , Minerals/pharmacology , Models, Biological , Tissue Engineering , Animals , Breast Neoplasms/complications , Calcinosis/complications , Carcinoma, Intraductal, Noninfiltrating/complications , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Interleukin-8/metabolism , Mice, Nude , Neoplasm Invasiveness , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Scaffolds/chemistry
9.
Cell Syst ; 9(1): 74-92.e8, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31302152

ABSTRACT

There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to ß-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.


Subject(s)
Antineoplastic Agents/therapeutic use , Growth Inhibitors/therapeutic use , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Spindle Apparatus/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Computational Biology , DNA Repair Enzymes/antagonists & inhibitors , Drug Synergism , Gene Expression Profiling , Humans , Molecular Targeted Therapy , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Spindle Apparatus/physiology , Tubulin/metabolism , Polo-Like Kinase 1
10.
Clin Cancer Res ; 24(21): 5458-5470, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30021909

ABSTRACT

Purpose: Clinically available BH3 mimetic drugs targeting BCLXL and/or BCL2 (navitoclax and venetoclax, respectively) are effective in some hematologic malignancies, but have limited efficacy in solid tumors. This study aimed to identify combination therapies that exploit clinical BH3 mimetics for prostate cancer.Experimental Design: Prostate cancer cells or xenografts were treated with BH3 mimetics as single agents or in combination with other agents, and effects on MCL1 and apoptosis were assessed. MCL1 was also targeted directly using RNAi, CRISPR, or an MCL1-specific BH3 mimetic, S63845.Results: We initially found that MCL1 depletion or inhibition markedly sensitized prostate cancer cells to apoptosis mediated by navitoclax, but not venetoclax, in vitro and in vivo, indicating that they are primed to undergo apoptosis and protected by MCL1 and BCLXL. Small-molecule EGFR kinase inhibitors (erlotinib, lapatinib) also dramatically sensitized to navitoclax-mediated apoptosis, and this was associated with markedly increased proteasome-dependent degradation of MCL1. This increased MCL1 degradation appeared to be through a novel mechanism, as it was not dependent upon GSK3ß-mediated phosphorylation and subsequent ubiquitylation by the ubiquitin ligases ßTRCP and FBW7, or through other previously identified MCL1 ubiquitin ligases or deubiquitinases. Inhibitors targeting additional kinases (cabozantinib and sorafenib) similarly caused GSK3ß-independent MCL1 degradation, and in combination with navitoclax drove apoptosis in vitro and in vivo Conclusions: These results show that prostate cancer cells are primed to undergo apoptosis and that cotargeting BCLXL and MCL1, directly or indirectly through agents that increase MCL1 degradation, can induce dramatic apoptotic responses. Clin Cancer Res; 24(21); 5458-70. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Prostatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , bcl-X Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proteolysis , Xenograft Model Antitumor Assays
11.
Cell Syst ; 6(3): 329-342.e6, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29550255

ABSTRACT

Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-ß1 (NRG1ß), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.


Subject(s)
Genes, erbB-2/drug effects , Genes, erbB-2/genetics , Tumor Microenvironment/genetics , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Databases, Genetic , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Genes, erbB-2/physiology , High-Throughput Screening Assays/methods , Humans , Lapatinib/pharmacology , MCF-7 Cells , Mice , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinazolines/pharmacology , Quinolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology , Xenograft Model Antitumor Assays
12.
Elife ; 62017 05 31.
Article in English | MEDLINE | ID: mdl-28561737

ABSTRACT

Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition. We showed that small molecule inhibitors of the PIM2 and ZAK kinases synergize with PI3K inhibition. In addition, using a microscale implementable device to deliver either siRNAs or small molecule inhibitors in vivo, we showed that suppressing these 5 genes with PI3K inhibition induced tumor regression. These observations identify targets whose inhibition synergizes with PI3K inhibitors and nominate potential combination therapies involving PI3K inhibition.


Subject(s)
Apoptosis , Drug Synergism , Enzyme Inhibitors/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , MAP Kinase Kinase Kinases , Mice, SCID , Neoplasms, Experimental/therapy , Transplantation, Heterologous , Treatment Outcome
13.
Ambio ; 46(7): 769-786, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28343340

ABSTRACT

Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.


Subject(s)
Climate Change , Databases, Factual , Decision Making , Alaska , Animals , Arctic Regions , Climate , Lakes , Petroleum , Water Supply
14.
Nat Med ; 23(2): 235-241, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28024083

ABSTRACT

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.


Subject(s)
Amino Acids/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Pinocytosis , Proteolysis , Serum Albumin/metabolism , Albumins/metabolism , Animals , Cell Line, Tumor , Chromatography, Gas , Disease Models, Animal , Extracellular Space/metabolism , Mice , Microscopy, Fluorescence, Multiphoton , Nitrogen Isotopes , Plasmapheresis , Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Conserv Physiol ; 4(1): cow055, 2016.
Article in English | MEDLINE | ID: mdl-27933167

ABSTRACT

Although not well known, Arctic grayling can move through saline waters and are captured regularly in nearshore coastal waters in Arctic Canada and Alaska with salinities up to 18 ppt. We highlight the implications this has for Blair et al. (2016), a paper recently published in Conservation Physiology.

16.
Clin Cancer Res ; 22(24): 6031-6038, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27091406

ABSTRACT

PURPOSE: Treatment of BRAF-mutated melanoma tumors with BRAF inhibitor-based therapy produces high response rates, but of limited duration in the vast majority of patients. Published investigations of resistance mechanisms suggest numerous examples of tumor adaptation and signal transduction bypass mechanisms, but without insight into biomarkers that would predict which mechanism will predominate. Monitoring phenotypic response of multiple adaptive mechanisms simultaneously within the same tumor as it adapts during treatment has been elusive. EXPERIMENTAL DESIGN: This study reports on a method to provide a more complete understanding of adaptive tumor responses. We simultaneously measured in vivo antitumor activity of 12 classes of inhibitors, which are suspected of enabling adaptive escape mechanisms, at various time points during systemic BRAF inhibition. We used implantable microdevices to release multiple compounds into distinct regions of a tumor to measure the efficacy of each compound independently and repeated these measurements as tumors progressed on systemic BRAF treatment. RESULTS: We observed varying phenotypic responses to specific inhibitors before, during, and after prolonged systemic treatment with BRAF inhibitors. Our results specifically identify PI3K, PDGFR, EGFR, and HDAC inhibitors as becoming significantly more efficacious during systemic BRAF inhibition. The sensitivity to other targeted inhibitors remained mostly unchanged, whereas local incremental sensitivity to PLX4720 declined sharply. CONCLUSIONS: These findings suggest redundancy of several resistance mechanisms and may help identify optimal constituents of more effective combination therapy in BRAF-mutant melanoma. They also represent a new paradigm for dynamic measurement of adaptive signaling mechanisms within the same tumor during therapy. Clin Cancer Res; 22(24); 6031-8. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Humans , Indoles/metabolism , Melanoma/metabolism , Mice , Mice, Nude , Mutation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Sulfonamides/metabolism , Xenograft Model Antitumor Assays/methods
17.
Environ Manage ; 57(2): 463-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26467673

ABSTRACT

Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.


Subject(s)
Ecosystem , Lakes/chemistry , Oxygen/analysis , Alaska , Animals , Arctic Regions , Conservation of Natural Resources , Fishes , Ice Cover , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...