Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(7): e0270474, 2022.
Article in English | MEDLINE | ID: mdl-35881611

ABSTRACT

Understanding the ecological niche of some fishes is complicated by their frequent use of a broad range of food resources and habitats across space and time. Little is known about Broad Whitefish (Coregonus nasus) ecological niches in Arctic landscapes even though they are an important subsistence species for Alaska's Indigenous communities. We investigated the foraging ecology and habitat use of Broad Whitefish via stable isotope analyses of muscle and liver tissue and otoliths from mature fish migrating in the Colville River within Arctic Alaska. The range of δ13C (-31.8- -21.9‰) and δ15N (6.6-13.1‰) across tissue types and among individuals overlapped with isotope values previously observed in Arctic lakes and rivers, estuaries, and nearshore marine habitat. The large range of δ18O (4.5-10.9‰) and δD (-237.6- -158.9‰) suggests fish utilized a broad spectrum of habitats across elevational and latitudinal gradients. Cluster analysis of muscle δ13C', δ15N, δ18O, and δD indicated that Broad Whitefish occupied four different foraging niches that relied on marine and land-based (i.e., freshwater and terrestrial) food sources to varying degrees. Most individuals had isotopic signatures representative of coastal freshwater habitat (Group 3; 25%) or coastal lagoon and delta habitat (Group 1; 57%), while individuals that mainly utilized inland freshwater (Group 4; 4%) and nearshore marine habitats (Group 2; 14%) represented smaller proportions. Otolith microchemistry confirmed that individuals with more enriched muscle tissue δ13C', δD, and δ18O tended to use marine habitats, while individuals that mainly used freshwater habitats had values that were less enriched. The isotopic niches identified here represent important foraging habitats utilized by Broad Whitefish. To preserve access to these diverse habitats it will be important to limit barriers along nearshore areas and reduce impacts like roads and climate change on natural flow regimes. Maintaining these diverse connected habitats will facilitate long-term population stability, buffering populations from future environmental and anthropogenic perturbations.


Subject(s)
Ecosystem , Salmonidae , Alaska , Animals , Carbon Isotopes/analysis , Lakes , Nitrogen Isotopes/analysis , Salmonidae/physiology
2.
PLoS One ; 17(5): e0259921, 2022.
Article in English | MEDLINE | ID: mdl-35499986

ABSTRACT

Conservation of Arctic fish species is challenging partly due to our limited ability to track fish through time and space, which constrains our understanding of life history diversity and lifelong habitat use. Broad Whitefish (Coregonus nasus) is an important subsistence species for Alaska's Arctic Indigenous communities, yet little is known about life history diversity, migration patterns, and freshwater habitat use. Using laser ablation Sr isotope otolith microchemistry, we analyzed Colville River Broad Whitefish 87Sr/86Sr chronologies (n = 61) to reconstruct movements and habitat use across the lives of individual fish. We found evidence of at least six life history types, including three anadromous types, one semi-anadromous type, and two nonanadromous types. Anadromous life history types comprised a large proportion of individuals sampled (collectively, 59%) and most of these (59%) migrated to sea between ages 0-2 and spent varying durations at sea. The semi-anadromous life history type comprised 28% of samples and entered marine habitat as larvae. Nonanadromous life history types comprised the remainder (collectively, 13%). Otolith 87Sr/86Sr data from juvenile and adult freshwater stages suggest that habitat use changed in association with age, seasons, and life history strategies. This information on Broad Whitefish life histories and habitat use across time and space will help managers and conservation planners better understand the risks of anthropogenic impacts and help conserve this vital subsistence resource.


Subject(s)
Life History Traits , Salmonidae , Alaska , Animals , Ecosystem , Strontium Isotopes
3.
Permafr Periglac Process ; 31(1): 110-127, 2020.
Article in English | MEDLINE | ID: mdl-32194312

ABSTRACT

Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km2 study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

4.
Ambio ; 46(7): 769-786, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28343340

ABSTRACT

Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.


Subject(s)
Climate Change , Databases, Factual , Decision Making , Alaska , Animals , Arctic Regions , Climate , Lakes , Petroleum , Water Supply
5.
Conserv Physiol ; 4(1): cow055, 2016.
Article in English | MEDLINE | ID: mdl-27933167

ABSTRACT

Although not well known, Arctic grayling can move through saline waters and are captured regularly in nearshore coastal waters in Arctic Canada and Alaska with salinities up to 18 ppt. We highlight the implications this has for Blair et al. (2016), a paper recently published in Conservation Physiology.

6.
Environ Manage ; 57(2): 463-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26467673

ABSTRACT

Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.


Subject(s)
Ecosystem , Lakes/chemistry , Oxygen/analysis , Alaska , Animals , Arctic Regions , Conservation of Natural Resources , Fishes , Ice Cover , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...