Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
2.
mBio ; 15(4): e0262323, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38426749

ABSTRACT

Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen, herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-α/ß receptors (Ifnar1-/-Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions without affecting viral loads. We used RNAseq to define IFN-λ- and IFN-ß-induced transcriptional responses in primary mouse keratinocytes. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9 protected against severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.IMPORTANCEType III interferons (IFN-λ) have been shown to have antiviral and immunomodulatory effects at epithelial barriers such as the respiratory and gastrointestinal tracts, but their effects on the skin have not been extensively investigated. We used mice lacking IFN-λ signaling to investigate the skin-specific effects of IFN-λ against the herpes simplex virus (HSV), which targets epithelial tissues to cause cold sores and genital herpes. We found that IFN-λ limited the severity of HSV skin lesions without affecting viral load and that this protective effect required IFN-λ signaling in both keratinocytes and neutrophils. We found that IFN-λ signaling in keratinocytes suppressed neutrophil recruitment to the skin and that depleting neutrophils protected against severe HSV skin lesions in the absence of IFN-λ. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection and suggests potential applications for IFN-λ in treating viral skin infections.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Mice , Animals , Interferon Lambda , Neutrophils , Cytokines , Interferon-alpha , Mice, Knockout , Antiviral Agents/pharmacology
3.
bioRxiv ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260637

ABSTRACT

Inflammatory neuropathies, which include CIDP (chronic inflammatory demyelinating polyneuropathy) and GBS (Guillain Barre Syndrome), result from autoimmune destruction of the peripheral nervous system (PNS) and are characterized by progressive weakness and sensory loss. CD4+ T cells play a key role in the autoimmune destruction of the PNS. Yet, key properties of pathogenic CD4+ T cells remain incompletely understood. Here, we use paired scRNAseq and scTCRseq of peripheral nerves from an inflammatory neuropathy mouse model to identify IL-21 expressing CD4+ T cells that are clonally expanded and multifunctional. These IL-21-expressing CD4+ T cells are comprised of two transcriptionally distinct expanded populations, which express genes associated with Tfh and Tph subsets. Remarkably, TCR clonotypes are shared between these two IL-21-expressing populations, suggesting a common lineage differentiation pathway. Finally, we demonstrate that IL-21 signaling is required for neuropathy development and pathogenic T cell infiltration into peripheral nerves. IL-21 signaling upregulates CXCR6, a chemokine receptor that promotes CD4+ T cell localization in peripheral nerves. Together, these findings point to IL-21 signaling, Tfh/Tph differentiation, and CXCR6-mediated cellular localization as potential therapeutic targets in inflammatory neuropathies.

4.
iScience ; 26(11): 108348, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026197

ABSTRACT

Zoonotic arenavirus infections can result in viral hemorrhagic disease, characterized by platelet loss, petechia, and multi-organ injury. The mechanisms governing these outcomes are likely impacted by virus strain and infection dose, as well as an individual's genetic background and immune constitution. To better understand the processes leading to severe pathogenesis, we compared two strains of inbred mice, C57BL/6J (B6) and FVB/NJ (FVB), that have diametrically opposed outcomes during disseminated lymphocytic choriomeningitis virus (LCMV) infection. Infection caused minimal pathogenesis in B6 mice, whereas FVB mice developed acute hepatitis and perished due, in part, to aberrant NK cell and T cell responses. Susceptible mice showed an outgrowth of cytolytic CD4+ T cells and loss of Treg cells. B6 congenic mice with the FVB allele at a 25Mb locus on chromosome 17 recapitulated FVB pathogenesis upon infection. A locus containing a limited number of variants in immune-related genes greatly impacts survival during infection.

5.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745383

ABSTRACT

Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against skin infections have not been extensively investigated. We sought to define the skin-specific effects of IFN-λ against the highly prevalent human pathogen herpes simplex virus (HSV). We infected mice lacking the IFN-λ receptor (Ifnlr1-/-), both the IFN-λ and the IFN-αß receptor (Ifnar1-/- Ifnlr1-/-), or IFN-λ cytokines (Ifnl2/3-/-) and found that IFN-λ restricts the severity of HSV-1 and HSV-2 skin lesions, independent of a direct effect on viral load. Using conditional knockout mice, we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-1 skin lesion severity, and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9 protected against severe HSV-1 skin lesions in Ifnlr1-/- mice. Altogether, our results suggest that IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during HSV infection, and suggest potential applications for IFN-λ in treating viral skin infections.

6.
JCI Insight ; 8(11)2023 06 08.
Article in English | MEDLINE | ID: mdl-37159271

ABSTRACT

Respiratory syncytial virus (RSV) infection causes significant morbidity and mortality in infants, immunocompromised individuals, and older individuals. There is an urgent need for effective antivirals and vaccines for high-risk individuals. We used 2 complementary in vivo models to analyze RSV-associated human lung pathology and human immune correlates of protection. RSV infection resulted in widespread human lung epithelial damage, a proinflammatory innate immune response, and elicited a natural adaptive human immune response that conferred protective immunity. We demonstrated a key role for human T cells in controlling RSV infection. Specifically, primed human CD8+ T cells or CD4+ T cells effectively and independently control RSV replication in human lung tissue in the absence of an RSV-specific antibody response. These preclinical data support the development of RSV vaccines, which also elicit effective T cell responses to improve RSV vaccine efficacy.


Subject(s)
Respiratory Syncytial Virus Infections , Infant , Humans , Respiratory Syncytial Virus Infections/prevention & control , Lung/pathology , Antibodies, Viral , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes
7.
J Hepatol ; 78(2): 271-280, 2023 02.
Article in English | MEDLINE | ID: mdl-36152761

ABSTRACT

BACKGROUND & AIMS: Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS: Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS: The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS: MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS: The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.


Subject(s)
Hepatitis A virus , Hepatitis A , Animals , Mice , Humans , Hepatitis A virus/genetics , Peptide Hydrolases , Mice, Inbred C57BL , Immunity, Innate , Viral Proteases
8.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867748

ABSTRACT

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Directed DNA Polymerase , Hepatitis A virus , Hepatitis A , Intrinsically Disordered Proteins , RNA Nucleotidyltransferases , RNA, Viral , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis A/drug therapy , Hepatitis A/metabolism , Hepatitis A/virology , Hepatitis A virus/drug effects , Hepatitis A virus/genetics , Hepatitis A virus/physiology , Humans , Intrinsically Disordered Proteins/metabolism , Mice , Mice, Mutant Strains , RNA Nucleotidyltransferases/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , Virus Replication/drug effects
9.
Nature ; 606(7916): 960-967, 2022 06.
Article in English | MEDLINE | ID: mdl-35705808

ABSTRACT

Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.


Subject(s)
Caspase 7 , Perforin , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Sphingomyelin Phosphodiesterase , Animals , Apoptosis , Caspase 7/metabolism , Chromobacterium/immunology , Epithelial Cells/cytology , Intestines/cytology , Killer Cells, Natural/immunology , Listeria monocytogenes/immunology , Mice , Organoids , Perforin/metabolism , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes, Cytotoxic/immunology
10.
PLoS Pathog ; 17(9): e1009960, 2021 09.
Article in English | MEDLINE | ID: mdl-34591933

ABSTRACT

HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2'-5' oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol.


Subject(s)
Hepatitis A/metabolism , Hepatitis A/pathology , Interferon Regulatory Factor-3/metabolism , Liver/pathology , Animals , Disease Models, Animal , Mice , Mice, Knockout , Transcriptome
11.
J Hepatol ; 75(6): 1323-1334, 2021 12.
Article in English | MEDLINE | ID: mdl-34331968

ABSTRACT

BACKGROUND & AIMS: Hepatitis A virus (HAV) is a common cause of enterically transmitted viral hepatitis. In non-immune individuals, infection results in typically transient but occasionally fulminant and fatal inflammatory liver injury. Virus-specific T cell frequencies peak when liver damage is at its zenith, leading to the prevalent notion that T cells exacerbate liver disease, as suspected for other hepatotropic virus infections. However, the overall contribution of T cells to the control of HAV and the pathogenesis of hepatitis A is unclear and has been impeded by a historic lack of small animal models. METHODS: Ifnar1-/- mice are highly permissive for HAV and develop pathogenesis that recapitulates many features of hepatitis A. Using this model, we identified HAV-specific CD8+ and CD4+ T cells by epitope mapping, and then used tetramers and functional assays to quantify T cells in the liver at multiple times after infection. We assessed the relationships between HAV-specific T cell frequency, viral RNA amounts, and liver pathogenesis. RESULTS: A large population of virus-specific T cells accumulated within the livers of Ifnar1-/- mice during the first 1-2 weeks of infection and persisted over time. HAV replication was enhanced and liver disease exacerbated when mice were depleted of T cells. Conversely, immunization with a peptide vaccine increased virus-specific CD8+ T cell frequencies in the liver, reduced viral RNA abundance, and lessened liver injury. CONCLUSION: These data show that T cells protect against HAV-mediated liver injury and can be targeted to improve liver health. LAY SUMMARY: Hepatitis A virus is a leading cause of acute viral hepatitis worldwide. T cells were thought to contribute to liver injury during acute infection. We now show that virus-specific T cells protect against infection and limit liver injury.


Subject(s)
Hepatitis A/prevention & control , Liver Diseases/prevention & control , T-Lymphocytes/metabolism , Analysis of Variance , Animals , Disease Models, Animal , Hepatitis A/drug therapy , Hepatitis A/epidemiology , Hepatitis A virus/drug effects , Hepatitis A virus/pathogenicity , Liver Diseases/drug therapy , Liver Diseases/epidemiology , Mice , North Carolina , Statistics, Nonparametric , T-Lymphocytes/physiology
12.
Cell Rep ; 35(2): 108966, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852868

ABSTRACT

Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses.


Subject(s)
Cytotoxicity, Immunologic/genetics , Histone Demethylases/genetics , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Gene Expression Profiling , Gene Expression Regulation , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Histone Demethylases/deficiency , Histone Demethylases/immunology , Histones/genetics , Histones/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/growth & development , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/virology , Viral Load/genetics , Viral Load/immunology , Lymphocyte Activation Gene 3 Protein
13.
J Virol ; 95(11): e0005821, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33692213

ABSTRACT

Iminosugar compounds are monosaccharide mimetics with broad but generally weak antiviral activities related to inhibition of enzymes involved in glycobiology. Miglustat (N-butyl-1-deoxynojirimycin), which is approved for the treatment of lipid storage diseases in humans, and UV-4 [N-(9-methoxynonyl)-1-deoxynojirimycin] inhibit the replication of hepatitis A virus (HAV) in cell culture (50% inhibitory concentrations [IC50s] of 32.13 µM and 8.05 µM, respectively) by blocking the synthesis of gangliosides essential for HAV cell entry. We used a murine model of hepatitis A and targeted mass spectrometry to assess the capacity of these compounds to deplete hepatic gangliosides and modify the course of HAV infection in vivo. Miglustat, given by gavage to Ifnar1-/- mice (4,800 mg/kg of body weight/day) depleted hepatic gangliosides by 69 to 75% but caused substantial gastrointestinal toxicity and failed to prevent viral infection. UV-4, similarly administered in high doses (400 mg/kg/day), was well tolerated but depleted hepatic gangliosides by only 20% after 14 days. UV-4 depletion of gangliosides varied by class. Several GM2 species were paradoxically increased, likely due to inhibition of ß-glucosidases that degrade gangliosides. Both compounds enhanced, rather than reduced, virus replication. Nonetheless, both iminosugars had surprising anti-inflammatory effects, blocking the accumulation of inflammatory cells within the liver. UV-4 treatment also resulted in a decrease in serum alanine aminotransferase (ALT) elevations associated with acute hepatitis A. These anti-inflammatory effects may result from iminosugar inhibition of cellular α-glucosidases, leading to impaired maturation of glycan moieties of chemokine and cytokine receptors, and point to the potential importance of paracrine signaling in the pathogenesis of acute hepatitis A. IMPORTANCE Hepatitis A virus (HAV) is a common cause of viral hepatitis. Iminosugar compounds block its replication in cultured cells by inhibiting the synthesis of gangliosides required for HAV cell entry but have not been tested for their ability to prevent or treat hepatitis A in vivo. We show that high doses of the iminosugars miglustat and UV-4 fail to deplete gangliosides sufficiently to block HAV infection in mice lacking a key interferon receptor. These compounds nonetheless have striking anti-inflammatory effects on the HAV-infected liver, reducing the severity of hepatitis despite enhancing chemokine and cytokine expression resulting from hepatocyte-intrinsic antiviral responses. We propose that iminosugar inhibition of cellular α-glucosidases impairs the maturation of glycan moieties of chemokine and cytokine receptors required for effective signaling. These data highlight the potential importance of paracrine signaling pathways in the inflammatory response to HAV and add to our understanding of HAV pathogenesis in mice.


Subject(s)
Gangliosides , Glycoside Hydrolase Inhibitors , Hepatitis A , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Gangliosides/metabolism , Hepatitis A/drug therapy , Hepatitis A virus , Inflammation/drug therapy , Mice , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Receptors, Interferon , Virus Internalization , alpha-Glucosidases/pharmacology
14.
Cell Mol Immunol ; 18(10): 2410-2421, 2021 10.
Article in English | MEDLINE | ID: mdl-32612153

ABSTRACT

Acute viral infection causes illness and death. In addition, an infection often results in increased susceptibility to a secondary infection, but the mechanisms behind this susceptibility are poorly understood. Since its initial identification as a marker for resident memory CD8+ T cells in barrier tissues, the function and regulation of CD103 integrin (encoded by ITGAE gene) have been extensively investigated. Nonetheless, the function and regulation of the resident CD103+CD8+ T cell response to acute viral infection remain unclear. Although TGFß signaling is essential for CD103 expression, the precise molecular mechanism behind this regulation is elusive. Here, we reveal a TGFß-SKI-Smad4 pathway that critically and specifically directs resident CD103+CD8+ T cell generation for protective immunity against primary and secondary viral infection. We found that resident CD103+CD8+ T cells are abundant in both lymphoid and nonlymphoid tissues from uninfected mice. CD103 acts as a costimulation signal to produce an optimal antigenic CD8+ T cell response to acute viral infection. There is a reduction in resident CD103+CD8+ T cells following primary infection that results in increased susceptibility of the host to secondary infection. Intriguingly, CD103 expression inversely and specifically correlates with SKI proto-oncogene (SKI) expression but not R-Smad2/3 activation. Ectopic expression of SKI restricts CD103 expression in CD8+ T cells in vitro and in vivo to hamper viral clearance. Mechanistically, SKI is recruited to the Itgae loci to directly suppress CD103 transcription by regulating histone acetylation in a Smad4-dependent manner. Our study therefore reveals that resident CD103+CD8+ T cells dictate protective immunity during primary and secondary infection. Interfering with SKI function may amplify the resident CD103+CD8+ T cell response to promote protective immunity.


Subject(s)
CD8-Positive T-Lymphocytes , DNA-Binding Proteins/genetics , Immunologic Memory , Proto-Oncogene Proteins/genetics , Virus Diseases/immunology , Animals , Mice , Proto-Oncogenes , Transforming Growth Factor beta/metabolism
15.
Nat Microbiol ; 5(9): 1069-1078, 2020 09.
Article in English | MEDLINE | ID: mdl-32451473

ABSTRACT

The Picornaviridae are a diverse family of positive-strand RNA viruses that includes numerous human and veterinary pathogens1. Among these, hepatitis A virus (HAV), a common cause of acute hepatitis in humans, is unique in that it is hepatotropic and is released from hepatocytes without lysis in small vesicles that resemble exosomes2,3. These quasi-enveloped virions are infectious and are the only form of virus that can be detected in the blood during acute infection2. By contrast, non-enveloped naked virions are shed in faeces and stripped of membranes by bile salts during passage through the bile ducts to the gut4. How these two distinct types of infectious hepatoviruses enter cells to initiate infection is unclear. Here, we describe a genome-wide forward screen that shows that glucosylceramide synthase and other components of the ganglioside synthetic pathway are crucial host factors that are required for cellular entry by hepatoviruses. We show that gangliosides-preferentially disialogangliosides-function as essential endolysosome receptors that are required for infection by both naked and quasi-enveloped virions. In the absence of gangliosides, both virion types are efficiently internalized through endocytosis, but capsids fail to uncoat and accumulate within LAMP1+ endolysosomes. Gangliosides relieve this block, binding to the capsid at low pH and facilitating a late step in entry involving uncoating and delivery of the RNA genome to the cytoplasm. These results reveal an atypical cellular entry pathway for hepatoviruses that is unique among picornaviruses.


Subject(s)
Endosomes/metabolism , Gangliosides/genetics , Gangliosides/metabolism , Hepatitis A virus/genetics , Hepatitis A virus/metabolism , Capsid/metabolism , Capsid Proteins/metabolism , Cell Line , Endocytosis , Exosomes , Gene Knockout Techniques , Genome, Viral , HeLa Cells , Hepatocytes/metabolism , Humans , Lysosomal Membrane Proteins , Lysosomes/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Virion/metabolism , Virus Internalization
16.
Cell Rep ; 27(5): 1387-1396.e5, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31042467

ABSTRACT

Arenaviruses can cause severe hemorrhagic disease in humans, which can progress to organ failure and death. The underlying mechanisms causing lethality and person-to-person variation in outcome remain incompletely explained. Herein, we characterize a mouse model that recapitulates many features of pathogenesis observed in humans with arenavirus-induced hemorrhagic disease, including thrombocytopenia, severe vascular leakage, lung edema, and lethality. The susceptibility of congenic B6.PL mice to lymphocytic choriomeningitis virus (LCMV) infection is associated with increased antiviral T cell responses in B6.PL mice compared with C57BL/6 mice and is T cell dependent. Pathogenesis imparted by the causative locus is inherited in a semi-dominant manner in F1 crosses. The locus includes PL-derived sequence variants in both poorly annotated genes and genes known to contribute to immune responses. This model can be used to further interrogate how limited genetic differences in the host can remarkably alter the disease course of viral infection.


Subject(s)
Genetic Loci , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/pathogenicity , Multiple Organ Failure/genetics , Animals , Cell Line , Cells, Cultured , Chlorocebus aethiops , Chromosomes/genetics , Cricetinae , Female , Genetic Predisposition to Disease , Lymphocytic Choriomeningitis/complications , Lymphocytic Choriomeningitis/pathology , Male , Mice , Mice, Inbred C57BL , Multiple Organ Failure/etiology , Vero Cells
17.
Cell Rep ; 27(2): 514-524.e5, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970254

ABSTRACT

Obesity in humans is associated with poorer health outcomes after infections compared with non-obese individuals. Here, we examined the effects of white adipose tissue and obesity on T cell responses to viral infection in mice. We show that lymphocytic choriomeningitis virus (LCMV) grows to high titer in adipose tissue. Virus-specific T cells enter the adipose tissue to resolve infection but then remain as a memory population distinct from memory T cells in lymphoid tissues. Memory T cells in adipose tissue are abundant in lean mice, and diet-induced obesity further increases memory T cell number in adipose tissue and spleen. Upon re-challenge infection, memory T cells rapidly cause severe pathogenesis, leading to increases in lipase levels, calcification of adipose tissue, pancreatitis, and reduced survival in obese mice but not lean mice. Thus, obesity leads to a unique form of viral pathogenesis involving memory T cell-dependent adipocyte destruction and damage to other tissues.


Subject(s)
Adipose Tissue/physiology , Obesity/genetics , T-Lymphocytes/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Obesity/pathology
18.
Nat Microbiol ; 4(7): 1096-1104, 2019 07.
Article in English | MEDLINE | ID: mdl-30988429

ABSTRACT

Current models of cell-intrinsic immunity to RNA viruses centre on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors or Toll-like receptors that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons1. RNA viruses have evolved sophisticated strategies to disrupt these signalling pathways and evade elimination by cells, attesting to their importance2. Less attention has been paid to how IRFs maintain basal levels of protection against viruses. Here, we depleted antiviral factors linked to RIG-I-like receptor and Toll-like receptor signalling to map critical host pathways restricting positive-strand RNA virus replication in immortalized hepatocytes and identified an unexpected role for IRF1. We show that constitutively expressed IRF1 acts independently of mitochondrial antiviral signalling (MAVS) protein, IRF3 and signal transducer and activator of transcription 1 (STAT1)-dependent signalling to provide intrinsic antiviral protection in actinomycin D-treated cells. IRF1 localizes to the nucleus, where it maintains the basal transcription of a suite of antiviral genes that protect against multiple pathogenic RNA viruses, including hepatitis A and C viruses, dengue virus and Zika virus. Our findings reveal an unappreciated layer of hepatocyte-intrinsic immunity to these positive-strand RNA viruses and identify previously unrecognized antiviral effector genes.


Subject(s)
Gene Expression , Hepatocytes/immunology , Immunity, Innate/genetics , Interferon Regulatory Factor-1/genetics , RNA Viruses/physiology , Animals , Cell Nucleus/metabolism , Cells, Cultured , Feces/virology , Gene Expression Profiling , Gene Expression Regulation , Gene Knockout Techniques , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Interferon Regulatory Factor-1/metabolism , Kinetics , Liver/virology , Mice , RNA, Small Interfering , Signal Transduction/genetics , Virus Replication
19.
Article in English | MEDLINE | ID: mdl-29661811

ABSTRACT

Mechanistic analyses of hepatitis A virus (HAV)-induced pathogenesis have long been thwarted by the lack of tractable small animal models that recapitulate disease observed in humans. Several approaches have shown success, including infection of chimeric mice with human liver cells. Other recent studies show that HAV can replicate to high titer in mice lacking expression of the type I interferon (IFN) receptor (IFN-α/ß receptor) or mitochondrial antiviral signaling (MAVS) protein. Mice deficient in the IFN receptor show critical features of type A hepatitis in humans when challenged with human HAV, including histological evidence of liver damage, leukocyte infiltration, and the release of liver enzymes into blood. Acute pathogenesis is caused by MAVS-dependent signaling that leads to intrinsic apoptosis of hepatocytes.


Subject(s)
Disease Models, Animal , Hepatitis A/immunology , Liver/virology , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing , Animals , Hepatitis A virus/pathogenicity , Hepatocytes , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL
20.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566882

ABSTRACT

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Subject(s)
Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Innate/immunology , Intercellular Signaling Peptides and Proteins/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Adaptor Proteins, Signal Transducing , Animals , Autoimmunity/genetics , Carrier Proteins/genetics , Carrier Proteins/immunology , Carrier Proteins/metabolism , Cell Cycle Proteins , Encephalomyelitis, Autoimmune, Experimental/genetics , Eukaryotic Initiation Factors , Humans , Immunity, Innate/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/microbiology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , NF-kappa B/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/immunology , TNF Receptor-Associated Factor 6/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...