Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Tree Physiol ; 41(3): 416-427, 2021 03 06.
Article in English | MEDLINE | ID: mdl-33094330

ABSTRACT

Our understanding of how conifers respond biochemically to multiple simultaneous herbivore attacks is lacking. Eastern hemlock (Tsuga canadensis; 'hemlock') is fed on by hemlock woolly adelgid (Adelges tsugae; 'adelgid') and by later-instar gypsy moth (Lymantria dispar; 'gypsy moth') caterpillars. The adelgid is a stylet-feeding insect that causes a salicylic acid (SA)-linked response in hemlock, and gypsy moth larvae are folivores that presumably cause a jasmonic acid (JA)-linked response. This system presents an opportunity to study how invasive herbivore-herbivore interactions mediated through host biochemical responses. We used a factorial field experiment to challenge chronically adelgid-infested hemlocks with gypsy moth caterpillars. We quantified 17 phytohormones, 26 phenolic and terpene metabolites, and proanthocyanidin, cell wall-bound (CW-bound) phenolic, and lignin contents. Foliage infested with adelgid only accumulated gibberellins and SA; foliage challenged by gypsy moth only accumulated JA phytohormones. Gypsy moth folivory on adelgid-infested foliage reduced the accumulation of JA phytohormones and increased the SA levels. Both herbivores increased CW-bound phenolics and gypsy moth increased lignin content when feeding alone but not when feeding on adelgid-infested foliage. Our study illustrates the importance of understanding the biochemical mechanisms and signaling antagonism underlying tree responses to multiple stresses and of disentangling local and systemic stress signaling in trees.


Subject(s)
Hemiptera , Tracheophyta , Animals , Herbivory , Trees , Tsuga
3.
Environ Entomol ; 49(5): 1226-1231, 2020 10 17.
Article in English | MEDLINE | ID: mdl-33068115

ABSTRACT

Hemlock woolly adelgid is an invasive piercing-sucking insect in eastern North America, which upon infestation of its main host, eastern hemlock ('hemlock'), improves attraction and performance of folivorous insects on hemlock. This increased performance may be mediated by hemlock woolly adelgid feeding causing antagonism between the the jasmonic acid and other hormone pathways. In a common garden experiments using hemlock woolly adelgid infestation and induction with methyl jasmonate (MeJA) and measures of secondary metabolite contents and defense-associated enzyme activities, we explored the impact of hemlock woolly adelgid feeding on the local and systemic induction of jasmonic acid (JA)-elicited defenses. We found that in local tissue hemlock woolly adelgid or MeJA exposure resulted in unique induced phenotypes, whereas the combined treatment resulted in an induced phenotype that was a mixture of the two individual treatments. We also found that if the plant was infested with hemlock woolly adelgid, the systemic response of the plant was dominated by hemlock woolly adelgid, regardless of whether MeJA was applied. Interestingly, in the absence of hemlock woolly adelgid, hemlock plants had a very weak systemic response to MeJA. We conclude that hemlock woolly adelgid infestation prevents systemic induction of JA-elicited defenses. Taken together, compromised local JA-elicited defenses combined with weak systemic induction could be major contributors to increased folivore performance on hemlock woolly adelgid-infested hemlock.


Subject(s)
Hemiptera , Hemlock , Pinaceae , Animals , Cyclopentanes , Oxylipins , Pinales , Tsuga
4.
J Neurosci Res ; 87(10): 2245-54, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19301429

ABSTRACT

Alterations in the cerebellum have been described as a neuropathological feature of autism. Although numerous studies have focused on the Purkinje cell (PC), the projection neuron of the cerebellar cortex, PC function is critically dependent on their innervation by the GABAergic basket cells (BCs) and stellate cells (SCs) in the cerebellar molecular layer. The present study was designed to determine whether there are differences in the packing density of these inhibitory interneurons or whether the ratio of these interneurons to PCs differs in autistic and age-matched control brains. The GABAergic interneurons were identified by using immunohistochemistry for parvalbumin (PV) in serial sections from the posterior cerebellar lobe of six autistic and four control brains and counted using stereological principles. Prior PC counts in the same area on adjacent sections (Whitney et al., 2008) were available and were used to calculate the number of BCs and SCs per PC. In this sample of brains, no statistically significant difference was detected between the autistic and the control groups in the density of BCs or SCs (P = 0.44 and P = 0.84, respectively) or in the number of BCs or SCs per PC (P = 0.47 and P = 0.44, respectively). The preservation of BCs and SCs, in the presence of the reduced PC numbers as found in at least two, and possibly three, of these six autistic cases (Whitney et al., 2008) suggests that PCs were generated, migrated to their proper location in the PC layer, and subsequently died in the autistic cases that showed a reduction in PCs.


Subject(s)
Autistic Disorder/pathology , Cerebellum/pathology , Neurons/classification , Neurons/pathology , Purkinje Cells/pathology , Adolescent , Adult , Cell Count/methods , Female , Humans , Interneurons/pathology , Male , Middle Aged , Postmortem Changes , Young Adult
5.
Cerebellum ; 7(3): 406-16, 2008.
Article in English | MEDLINE | ID: mdl-18587625

ABSTRACT

Although a decreased number of cerebellar Purkinje cells (PCs) in the autistic brain has been widely reported with a variety of qualitative and quantitative methods, the more accurate method of cell counting with modern stereology has not yet been employed. An additional possible problem with prior reports is the use of Nissl staining to identify the PCs, as this can miss cells due to staining irregularities. In the present study, PCs were immunostained for calbindin-D28k (CB), as this has been shown to be a more reliable marker for PCs than the Nissl stain, with more than 99% of the PCs immunopositive (Whitney, Kemper, Rosene, Bauman, Blatt, J Neurosci Methods 168:42-47, 2008). Using stereology and CB immunostaining, the density of PCs was determined in serial sections from a consistently defined area of the cerebellar hemisphere in four control and six autistic brains, with the density of PCs then correlated with the clinical severity of autism. Overall, there was no significant difference in the density of PCs between the autistic and control groups. However, three of six autistic brains had PC numbers that fell within the control range, whereas the remaining three autistic brains revealed a reduction compared with the control brains. These data demonstrate that a reduction in cerebellar PCs was not a consistent feature of these autistic brains and that it occurred without discernible correlation between their density and the clinical features or severity of autism.


Subject(s)
Autistic Disorder/genetics , Brain/pathology , Cerebellum/pathology , Purkinje Cells/pathology , S100 Calcium Binding Protein G/metabolism , Adolescent , Adult , Biomarkers/metabolism , Calbindin 1 , Calbindins , Cerebellum/physiology , Female , Humans , Male , Middle Aged , Purkinje Cells/physiology , Reference Values , Severity of Illness Index , Young Adult
6.
J Neurosci Methods ; 168(1): 42-7, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-17961663

ABSTRACT

In a study of human Purkinje cell (PC) number, a striking mismatch between the number of PCs observed with the Nissl stain and the number of PCs immunopositive for calbindin-D28k (CB) was identified in 2 of the 10 brains examined. In the remaining eight brains this mismatch was not observed. Further, in these eight brains, analysis of CB immunostained sections counterstained with the Nissl stain revealed that more than 99% Nissl stained PCs were also immunopositive for CB. In contrast, in the two discordant brains, only 10-20% of CB immunopositive PCs were also identified with the Nissl stain. Although this finding was unexpected, a historical survey of the literature revealed that Spielmeyer [Spielmeyer W. Histopathologie des nervensystems. Julius Springer: Berlin; 1922. p. 56-79] described human cases with PCs that lacked the expected Nissl staining intensity, an important historical finding and critical issue when studying postmortem human brains. The reason for this failure in Nissl staining is not entirely clear, but it may result from premortem circumstances since it is not accounted for by postmortem delay or processing variables. Regardless of the exact cause, these observations suggest that Nissl staining may not be a reliable marker for PCs and that CB is an excellent alternative marker.


Subject(s)
Cerebellum/cytology , Purkinje Cells/metabolism , S100 Calcium Binding Protein G/metabolism , Staining and Labeling/methods , Adolescent , Adult , Biomarkers , Calbindin 1 , Calbindins , Female , Humans , Male , Middle Aged , Nissl Bodies , Purkinje Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...