Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 125(5): 054303, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16942209

ABSTRACT

First high-resolution infrared spectra are presented for jet-cooled CH2 35Cl and CH2 37Cl radicals in the symmetric (nu1) CH2 stretching mode. A detailed spectral assignment yields refined lower and upper state rotational constants, as well as fine structure spin-rotation parameters from least-squares fits to the sub-Doppler line shapes for individual transitions. The rotational constants are consistent with a nearly planar structure, but do not exclude substantial large amplitude bending motion over a small barrier to planarity accessible with zero-point excitation. High level coupled cluster (singles/doubles/triples) calculations, extrapolated to the complete basis set limit, predict a slightly nonplanar equilibrium structure (theta approximately 11 degrees), with a vibrationally adiabatic treatment of the bend coordinate yielding a v = 1<--0 anharmonic frequency (393 cm(-1)) in excellent agreement with matrix studies (nu(bend) approximately 400 cm(-1)). The antisymmetric CH2 stretch vibration is not observed despite high sensitivity detection (signal to noise ratio >20:1) in the symmetric stretch band. This is consistent with density functional theory intensity calculations indicating a >35-fold smaller antisymmetric stretch transition moment for CH2Cl, and yet contrasts dramatically with high-resolution infrared studies of CH2F radical, for which both symmetric and antisymmetric CH2 stretches are observed in a nearly 2:1 intensity ratio. A simple physical model is presented based on a competition between bond-dipole and "charge-sloshing" contributions to the transition moment, which nicely explains the trends in CH2X symmetric versus asymmetric stretch intensities as a function of electron withdrawing group (X = D,Br,Cl,F).

2.
J Chem Phys ; 125(5): 054304, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16942210

ABSTRACT

The combination of shot noise-limited direct absorption spectroscopy with long-path-length slit supersonic discharges has been used to obtain first high-resolution infrared spectra for jet-cooled CH2F radicals in the symmetric (nu1) and antisymmetric (nu5) CH2 stretching modes. Spectral assignment has yielded refined lower- and upper-state rotational constants and fine-structure parameters from least-squares fits to the sub-Doppler line shapes for individual transitions. The rotational constants provide indications of large amplitude vibrational averaging over a low-barrier double minimum inversion-bending potential. This behavior is confirmed by high-level coupled cluster singles/doubles/triples calculations extrapolated to the complete basis set limit and adiabatically corrected for zero point energy. The calculations predict a nonplanar equilibrium structure (theta approximately 29 degrees, where theta is defined to be 180 degrees minus the angle between the C-F bond and the CH2 plane) with a 132 cm(-1) barrier to planarity and a vibrational bend frequency (nu(bend) approximately 276 cm(-1)), in good agreement with previous microwave estimates (nu(bend) = 300 (30) cm(-1)) by Hirota and co-workers [Y. Endo et al., J. Chem. Phys. 79, 1605 (1983)]. The nearly 2:1 ratio of absorption intensities for the symmetric versus antisymmetric bands is in good agreement with density functional theory calculations, but in sixfold contrast with simple local mode CH2 bond dipole predictions of 1:3. This discrepancy arises from a surprisingly strong dependence of the symmetric stretch intensity on the inversion bend angle and provides further experimental support for a nonplanar equilibrium structure.

3.
J Chem Phys ; 122(12): 124310, 2005 Mar 22.
Article in English | MEDLINE | ID: mdl-15836381

ABSTRACT

State-to-state scattering dynamics of F+C2H6-->HF(v,J)+C2H5 have been investigated at Ecom=3.2(6) kcalmol under single-collision conditions, via detection of nascent rovibrationally resolved HF(v,J) product states with high-resolution infrared laser absorption methods. State-resolved Doppler absorption profiles are recorded for multiple HF(v,J) transitions originating in the v=0,1,2,3 manifold, analyzed to yield absolute column-integrated densities via known HF transition moments, and converted into nascent probabilities via density-to-flux analysis. The spectral resolution of the probe laser also permits Doppler study of translational energy release into quantum-state-resolved HF fragments, which reveals a remarkable linear correlation between (i) HF(v,J) translational recoil and (ii) the remaining energy available, Eavail=Etot-E(HF(v,J)). The dynamics are interpreted in the context of a simple impulsive model based on conservation of linearangular momentum that yields predictions in good agreement with experiment. Deviations from the model indicate only minor excitation of ethyl vibrations, in contrast with a picture of extensive intramolecular vibrational energy flow but consistent with Franck-Condon excitation of the methylene CH2 bending mode. The results suggest a relatively simple dynamical picture for exothermic atom+polyatomic scattering, i.e., that of early barrier dynamics in atom+diatom systems but modified by impulsive recoil coupling at the transition state between translationalrotational degrees of freedom.

SELECTION OF CITATIONS
SEARCH DETAIL
...