Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 29(1): 104-119.e10, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30595520

ABSTRACT

Switch-like activation of the spindle assembly checkpoint (SAC) is critical for accurate chromosome segregation and for cell division in a timely manner. To determine the mechanisms that achieve this, we engineered an ectopic, kinetochore-independent SAC activator: the "eSAC." The eSAC stimulates SAC signaling by artificially dimerizing Mps1 kinase domain and a cytosolic KNL1 phosphodomain, the kinetochore signaling scaffold. By exploiting variable eSAC expression in a cell population, we defined the dependence of the eSAC-induced mitotic delay on eSAC concentration in a cell to reveal the dose-response behavior of the core signaling cascade of the SAC. These quantitative analyses and subsequent mathematical modeling of the dose-response data uncover two crucial properties of the core SAC signaling cascade: (1) a cellular limit on the maximum anaphase-inhibitory signal that the cascade can generate due to the limited supply of SAC proteins and (2) the ability of the KNL1 phosphodomain to produce the anaphase-inhibitory signal synergistically, when it recruits multiple SAC proteins simultaneously. We propose that these properties together achieve inverse, non-linear scaling between the signal output per kinetochore and the number of signaling kinetochores. When the number of kinetochores is low, synergistic signaling by KNL1 enables each kinetochore to produce a disproportionately strong signal output. However, when many kinetochores signal concurrently, they compete for a limited supply of SAC proteins. This frustrates synergistic signaling and lowers their signal output. Thus, the signaling activity of unattached kinetochores will adapt to the changing number of signaling kinetochores to enable the SAC to approximate switch-like behavior.


Subject(s)
Chromosome Segregation/physiology , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/physiology , Signal Transduction/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Protein Multimerization , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism
2.
Plant J ; 96(3): 532-545, 2018 11.
Article in English | MEDLINE | ID: mdl-30054951

ABSTRACT

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Subject(s)
Brachypodium/genetics , Plant Proteins/genetics , Biomass , Brachypodium/growth & development , Brassicaceae/genetics , Brassicaceae/growth & development , Cell Wall/metabolism , Cellulose/metabolism , Lignin/metabolism , Plant Proteins/metabolism , Polysaccharides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Curr Biol ; 27(23): 3666-3675.e6, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29153323

ABSTRACT

The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/genetics , Kinetochores/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Tubulin/metabolism
4.
PLoS One ; 9(6): e100072, 2014.
Article in English | MEDLINE | ID: mdl-24927130

ABSTRACT

Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.


Subject(s)
Brachypodium/growth & development , Circadian Clocks/physiology , Circadian Rhythm/physiology , Temperature , Brachypodium/genetics , Brachypodium/radiation effects , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant/radiation effects , Light , Photoperiod , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Time-Lapse Imaging
5.
PLoS One ; 8(11): e80640, 2013.
Article in English | MEDLINE | ID: mdl-24278300

ABSTRACT

While many aspects of plant cell wall polymer structure are known, their spatial and temporal distribution within the stem are not well understood. Here, we studied vascular system and fiber development, which has implication for both biofuel feedstock conversion efficiency and crop yield. The subject of this study, Brachypodium distachyon, has emerged as a grass model for food and energy crop research. Here, we conducted our investigation using B. distachyon by applying various histological approaches and Fourier transform infrared spectroscopy to the stem internode from three key developmental stages. While vascular bundle size and number did not change over time, the size of the interfascicular region increased dramatically, as did cell wall thickness. We also describe internal stem internode anatomy and demonstrate that lignin deposition continues after crystalline cellulose and xylan accumulation ceases. The vascular bundle anatomy of B. distachyon appears to be highly similar to domesticated grasses. While the arrangement of bundles within the stem is highly variable across grasses, B. distachyon appears to be a suitable model for the rind of large C4 grass crops. A better understanding of growth and various anatomical and cell wall features of B. distachyon will further our understanding of plant biomass accumulation processes.


Subject(s)
Brachypodium/growth & development , Cell Wall/physiology , Plant Stems/growth & development , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...