Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Phys ; 41(1): 85-97, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25403822

ABSTRACT

Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.


Subject(s)
Light , Osmolar Concentration , Scattering, Radiation , Serum Albumin, Bovine/metabolism , Animals , Cattle , Hydrodynamics , Protein Binding/drug effects , Serum Albumin, Bovine/chemistry , Sodium Chloride/pharmacology , Static Electricity
2.
Nanomedicine (Lond) ; 7(11): 1729-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22812710

ABSTRACT

AIM: Nanoparticle-enhanced photothermal therapy is a promising alternative to tumor resection. However, quantitative measurements of cellular response to these treatments are limited. This article introduces a Bimodal Enhanced Analysis of Spatiotemporal Temperature (BEAST) algorithm to rapidly determine the viability of cancer cells in vitro following photothermal therapy alone or in combination with nanoparticles. MATERIALS & METHODS: To illustrate the capability of the BEAST viability algorithm, single wall carbon nanohorns were added to renal cancer (RENCA) cells in vitro and time-dependent spatial temperature maps measured with an infrared camera during laser therapy were correlated with post-treatment cell viability distribution maps obtained by cell-staining fluorescent microscopy. CONCLUSION: The BEAST viability algorithm accurately and rapidly determined the cell viability as a function of time, space and temperature.


Subject(s)
Image Processing, Computer-Assisted , Kidney Neoplasms/pathology , Kidney Neoplasms/surgery , Kidney/pathology , Laser Therapy , Nanoparticles/therapeutic use , Animals , Cell Line, Tumor , Cell Survival , Image Processing, Computer-Assisted/methods , Kidney/cytology , Mice , Microscopy, Fluorescence , Temperature
3.
Lasers Surg Med ; 43(1): 43-51, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21254142

ABSTRACT

BACKGROUND: Nanoparticles have significant potential as selective photo-absorbing agents for laser based cancer treatment. This study investigates the use of single walled carbon nanohorns (SWNHs) as thermal enhancers when excited by near infrared (NIR) light for tumor cell destruction. METHODS: Absorption spectra of SWNHs in deionized water at concentrations of 0, 0.01, 0.025, 0.05, 0.085, and 0.1 mg/ml were measured using a spectrophotometer for the wavelength range of 200-1,400 nm. Mass attenuation coefficients were calculated using spectrophotometer transmittance data. Cell culture media containing 0, 0.01, 0.085, and 0.333 mg/ml SWNHs was laser irradiated at 1,064 nm wavelength with an irradiance of 40 W/cm² for 0-5 minutes. Temperature elevations of these solutions during laser irradiation were measured with a thermocouple 8 mm away from the incident laser beam. Cell viability of murine kidney cancer cells (RENCA) was measured 24 hours following laser treatment with the previously mentioned laser parameters alone or with SWNHs. Cell viability as a function of radial position was determined qualitatively using trypan blue staining and bright field microscopy for samples exposed to heating durations of 2 and 6 minutes alone or with 0.085 mg/ml SWNHs. A Beckman Coulter Vi-Cell instrument quantified cell viability of samples treated with varying SWNH concentration (0, 0.01, 0.085, and 0.333 mg/ml) and heating durations of 0-6 minutes. RESULTS: Spectrophotometer measurements indicated inclusion of SWNHs increased light absorption and attenuation across all wavelengths. Utilizing SWNHs with laser irradiation increased temperature elevation compared to laser heating alone. Greater absorption and higher temperature elevations were observed with increasing SWNH concentration. No inherent toxicity was observed with SWNH inclusion. A more rapid and substantial viability decline was observed over time in samples exposed to SWNHs with laser treatment compared with samples experiencing laser heating or SWNH treatment alone. Samples heated for 6 minutes with 0.085 mg/ml SWNHs demonstrated increasing viability as the radial distance from the incident laser beam increased. CONCLUSIONS: The significant increases in absorption, temperature elevation, and cell death with inclusion of SWNHs in laser therapy demonstrate the potential of their use as agents for enhancing photothermal tumor destruction.


Subject(s)
Laser Therapy/methods , Nanotubes, Carbon , Neoplasms/therapy , Animals , Combined Modality Therapy , Tumor Cells, Cultured
4.
Biomaterials ; 32(9): 2294-304, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21195474

ABSTRACT

Electrospun polymer/apatite composite scaffolds are promising candidates as functional bone substitutes because of their ability to allow pre-osteoblast attachment, proliferation, and differentiation. However these structures usually lack an adequate pore size to permit sufficient cell migration and colonization of the scaffold. To overcome this limitation, we developed an apatite-coated electrospun PLLA scaffold with varying pore size and porosity by utilizing a three-step water-soluble PEO fiber inclusion, dissolution, and mineralization process. The temporal and spatial dynamics of cell migration into the scaffolds were quantified to determine the effects of enhanced pore size and porosity on cell infiltration. MC3T3-E1 pre-osteoblast migration into the scaffolds was found to be a function of both initial PEO content and time. Scaffolds with greater initial PEO content (50% and 75% PEO) had drastically accelerated cell infiltration in addition to enhanced cell distribution throughout the scaffold when compared to scaffolds with lower PEO content (0% and 25% PEO). Furthermore, scaffolds with an apatite substrate significantly upregulated MC3T3-E1 alkaline phosphatase activity, osteocalcin content, and cell-mediated mineralization as compared to PLLA alone. These findings suggest that such a scaffold enhances pre-osteoblast infiltration, colonization, and maturation in vitro and may lead to overall improved bone formation when implanted in vivo.


Subject(s)
Apatites/pharmacology , Cell Differentiation/drug effects , Cell Movement/drug effects , Lactic Acid/pharmacology , Materials Testing/methods , Osteoblasts/cytology , Polymers/pharmacology , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Animals , Biomechanical Phenomena/drug effects , Calcium/metabolism , Cell Count , Elastic Modulus/drug effects , Indoles/metabolism , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Minerals , Osteoblasts/drug effects , Osteoblasts/enzymology , Osteocalcin/metabolism , Polyesters , Porosity/drug effects , Tensile Strength/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...