Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553553

ABSTRACT

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Subject(s)
Cerebral Palsy , DNA Copy Number Variations , Humans , Child , DNA Copy Number Variations/genetics , Cerebral Palsy/genetics , Mutation , Whole Genome Sequencing , Genomics
2.
Nature ; 586(7827): 80-86, 2020 10.
Article in English | MEDLINE | ID: mdl-32717741

ABSTRACT

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Repeat Expansion/genetics , Genome, Human/genetics , Genomics , Tandem Repeat Sequences/genetics , Female , Fibroblast Growth Factors/genetics , Genetic Predisposition to Disease , Humans , Intelligence/genetics , Iron-Binding Proteins/genetics , Male , Myotonin-Protein Kinase/genetics , Nucleotide Motifs , Polymorphism, Genetic , Frataxin
3.
G3 (Bethesda) ; 7(2): 755-773, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28087693

ABSTRACT

The Canadian beaver (Castor canadensis) is the largest indigenous rodent in North America. We report a draft annotated assembly of the beaver genome, the first for a large rodent and the first mammalian genome assembled directly from uncorrected and moderate coverage (< 30 ×) long reads generated by single-molecule sequencing. The genome size is 2.7 Gb estimated by k-mer analysis. We assembled the beaver genome using the new Canu assembler optimized for noisy reads. The resulting assembly was refined using Pilon supported by short reads (80 ×) and checked for accuracy by congruency against an independent short read assembly. We scaffolded the assembly using the exon-gene models derived from 9805 full-length open reading frames (FL-ORFs) constructed from the beaver leukocyte and muscle transcriptomes. The final assembly comprised 22,515 contigs with an N50 of 278,680 bp and an N50-scaffold of 317,558 bp. Maximum contig and scaffold lengths were 3.3 and 4.2 Mb, respectively, with a combined scaffold length representing 92% of the estimated genome size. The completeness and accuracy of the scaffold assembly was demonstrated by the precise exon placement for 91.1% of the 9805 assembled FL-ORFs and 83.1% of the BUSCO (Benchmarking Universal Single-Copy Orthologs) gene set used to assess the quality of genome assemblies. Well-represented were genes involved in dentition and enamel deposition, defining characteristics of rodents with which the beaver is well-endowed. The study provides insights for genome assembly and an important genomics resource for Castoridae and rodent evolutionary biology.


Subject(s)
Genome , Rodentia/genetics , Transcriptome/genetics , Animals , Genomics , Molecular Sequence Annotation , Open Reading Frames/genetics
4.
J Oral Maxillofac Surg ; 74(3): 562-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26546844

ABSTRACT

PURPOSE: To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. MATERIALS AND METHODS: This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. RESULTS: For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. CONCLUSIONS: Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure.


Subject(s)
Bone Wires , Jaw Fixation Techniques/instrumentation , Equipment Design , Equipment Failure , Humans , Mandible/anatomy & histology , Materials Testing , Microscopy, Electron , Models, Anatomic , Stress, Mechanical , Surface Properties
5.
Science ; 327(5964): 425-31, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20093466

ABSTRACT

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Subject(s)
Gene Regulatory Networks , Genome, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Computational Biology , Gene Duplication , Gene Expression Regulation, Fungal , Genes, Fungal , Genetic Fitness , Metabolic Networks and Pathways , Mutation , Protein Interaction Mapping , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...