Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 170(1): 161-71, 2005 May.
Article in English | MEDLINE | ID: mdl-15744054

ABSTRACT

Mutations that inactivate the retinoblastoma (Rb) pathway are common in human tumors. Such mutations promote tumor growth by deregulating the G1 cell cycle checkpoint. However, uncontrolled cell cycle progression can also produce new liabilities for cell survival. To uncover such liabilities in Rb mutant cells, we performed a clonal screen in the Drosophila eye to identify second-site mutations that eliminate Rbf(-) cells, but allow Rbf(+) cells to survive. Here we report the identification of a mutation in a novel highly conserved peptidyl prolyl isomerase (PPIase) that selectively eliminates Rbf(-) cells from the Drosophila eye.


Subject(s)
Drosophila melanogaster/embryology , Eye/embryology , Peptidylprolyl Isomerase/genetics , Retinoblastoma Protein/genetics , Amino Acid Sequence , Animals , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Eye/enzymology , Molecular Sequence Data , Mutation
2.
Nat Genet ; 36(3): 288-92, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14981519

ABSTRACT

In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Sequence Deletion , Animals , Genome , Mutagenesis, Insertional
SELECTION OF CITATIONS
SEARCH DETAIL
...