Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(22)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38856066

ABSTRACT

In the liquid phase of heterogeneous catalysis, solvent plays an important role and governs the kinetics and thermodynamics of a reaction. Although it is often difficult to quantify the role of the solvent, it becomes particularly challenging when a zeolite is used as the catalyst. This difficulty arises from the complex nature of the liquid/zeolite interface and the different solvation environments around catalytically active sites. Here, we use ab initio molecular dynamics simulations to probe the local solvation structure and dynamics of methanol and water over MWW zeolite nanosheets with varying Brønsted acidity. We find that the zeolite framework and the number and location of the acid sites in the zeolite influence the structure and dynamics of the solvent. In particular, methanol is more likely to be in the vicinity of the aluminum (Al3+) at the T4 site than at T1 due to easy accessibility. The methanol oxygen binds strongly to the Al at the T4 site, weakening the Al-O for the bridging acid site, which results in the formation of the silanol group, significantly reducing the acidity of the site. The behavior of methanol is in direct contrast to that of water, where protons can easily propagate from the zeolite to the solvent molecules regardless of the acid site location. Our work provides molecular-level insights into how solvent interacts with zeolite surfaces, leading to an improved understanding of the catalytic site in the MWW zeolite nanosheet.

SELECTION OF CITATIONS
SEARCH DETAIL
...