Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 438: 135-43, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22982939

ABSTRACT

Mercury (Hg) biomagnification in aquatic ecosystems remains a concern because this pollutant is known to affect the health of fish-eating wildlife and humans, and the fish themselves. The "rate" of mercury biomagnification is being assessed more frequently using stable nitrogen isotope ratios (δ(15)N), a measure of relative trophic position of biota within a food web. Within food webs and across diverse systems, log-transformed Hg concentrations are significantly and positively related to δ(15)N and the slopes of these models vary from one study to another for reasons that are not yet understood. Here we compared the rates of Hg biomagnification in 14 lake trout lakes from three provinces in Canada to understand whether any characteristics of the ecosystems explained this among-system variability. Several fish species, zooplankton and benthic invertebrates were collected from these lakes and analyzed for total Hg (fish only), methyl Hg (invertebrates) and stable isotopes (δ(15)N; δ(13)C to assess energy sources). Mercury biomagnification rates varied significantly across systems and were higher for food webs of larger (surface area), higher nutrient lakes. However, the slopes were not predictive of among-lake differences in Hg in the lake trout. Results indicate that among-system differences in the rates of Hg biomagnification seen in the literature may be due, in part, to differences in ecosystem characteristics although the mechanisms for this variability are not yet understood.


Subject(s)
Food Chain , Invertebrates/metabolism , Lakes/chemistry , Mercury/analysis , Mercury/pharmacokinetics , Trout/metabolism , Animals , Canada , Carbon Isotopes , Models, Chemical , Nitrogen Isotopes/analysis , Spectrophotometry, Atomic
2.
Environ Toxicol Chem ; 25(8): 2177-86, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16916037

ABSTRACT

The extent of bioaccumulation and trophic transfer of brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) diastereoisomers (alpha, beta, and gamma), decabromodiphenylethane (DBDPE), and bis(2,4,6-tribromophenoxy)ethane (BTBPE) was examined in a Lake Winnipeg (Canada) food web. Six species of fish, zooplankton, mussels, sediment, and water from the south basin of the lake were selected for study. Significant positive correlations were found between concentrations of total (sigma) polybrominated diphenylethers (PBDEs; p < 0.005), sigmaHBCDs (p < 0.0001), BTBPE (p < 0.0001), and lipid content in fish. Strong positive linear relationships also were observed from individual plots of BDE 47, BDE 209, and DBDPE concentrations (lipid wt) and trophic level (based on delta15N), suggesting that these compounds biomagnify in the Lake Winnipeg food web. Biomagnification factors varied for the chemicals studied. Plots of log bioaccumulation factors for mussel and zooplankton versus log octanol-water partition coefficient (Kow) were similar and suggest that neither mussels nor zooplankton are in equilibrium with the water. Fifteen BDE congeners were consistently detected in water (dissolved phase, n = 3), with BDE 47 having the greatest concentration (17 pg/L). The rank order of compounds in water (arithmetic mean +/- standard error) were sigmaPBDEs (49 +/- 12 pg/ L) > alpha-HBCD (11 +/- 2 pg/L) > BTBPE (1.9 +/- 0.6 pg/L). Concentrations of DPDPE, BDE 209, and beta- and -gamma-HBCD isomers were below their respective method detection limits (MDLs) in water. Total PBDE concentrations in sediment (n = 4) were greater than any other brominated flame retardant examined in the present study and ranged from 1,160 to 1,610 ng/g (dry wt), with BDE 209 contributing roughly 50% of the total. The gamma-HBCD isomer was detected at concentrations of 50 +/- 20 pg/g (dry wt) in sediment, whereas BTBPE and DBDPE were consistently below their respective MDLs in sediment.


Subject(s)
Bromine/metabolism , Flame Retardants/metabolism , Food Chain , Animals , Canada , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Quality Control , Reference Standards , Sensitivity and Specificity
3.
J Biomech ; 35(4): 543-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11934426

ABSTRACT

The Standardization and Terminology Committee (STC) of the International Society of Biomechanics (ISB) proposes a general reporting standard for joint kinematics based on the Joint Coordinate System (JCS), first proposed by Grood and Suntay for the knee joint in 1983 (J. Biomech. Eng. 105 (1983) 136). There is currently a lack of standard for reporting joint motion in the field of biomechanics for human movement, and the JCS as proposed by Grood and Suntay has the advantage of reporting joint motions in clinically relevant terms. In this communication, the STC proposes definitions of JCS for the ankle, hip, and spine. Definitions for other joints (such as shoulder, elbow, hand and wrist, temporomandibular joint (TMJ), and whole body) will be reported in later parts of the series. The STC is publishing these recommendations so as to encourage their use, to stimulate feedback and discussion, and to facilitate further revisions. For each joint, a standard for the local axis system in each articulating bone is generated. These axes then standardize the JCS. Adopting these standards will lead to better communication among researchers and clinicians.


Subject(s)
Joints/physiology , Movement/physiology , Biomechanical Phenomena , Humans , International Cooperation , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...