Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Methods ; 17(1): 27, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750422

ABSTRACT

BACKGROUND: Stomata analysis using microscope imagery provides important insight into plant physiology, health and the surrounding environmental conditions. Plant scientists are now able to conduct automated high-throughput analysis of stomata in microscope data, however, existing detection methods are sensitive to the appearance of stomata in the training images, thereby limiting general applicability. In addition, existing methods only generate bounding-boxes around detected stomata, which require users to implement additional image processing steps to study stomata morphology. In this paper, we develop a fully automated, robust stomata detection algorithm which can also identify individual stomata boundaries regardless of the plant species, sample collection method, imaging technique and magnification level. RESULTS: The proposed solution consists of three stages. First, the input image is pre-processed to remove any colour space biases occurring from different sample collection and imaging techniques. Then, a Mask R-CNN is applied to estimate individual stomata boundaries. The feature pyramid network embedded in the Mask R-CNN is utilised to identify stomata at different scales. Finally, a statistical filter is implemented at the Mask R-CNN output to reduce the number of false positive generated by the network. The algorithm was tested using 16 datasets from 12 sources, containing over 60,000 stomata. For the first time in this domain, the proposed solution was tested against 7 microscope datasets never seen by the algorithm to show the generalisability of the solution. Results indicated that the proposed approach can detect stomata with a precision, recall, and F-score of 95.10%, 83.34%, and 88.61%, respectively. A separate test conducted by comparing estimated stomata boundary values with manually measured data showed that the proposed method has an IoU score of 0.70; a 7% improvement over the bounding-box approach. CONCLUSIONS: The proposed method shows robust performance across multiple microscope image datasets of different quality and scale. This generalised stomata detection algorithm allows plant scientists to conduct stomata analysis whilst eliminating the need to re-label and re-train for each new dataset. The open-source code shared with this project can be directly deployed in Google Colab or any other Tensorflow environment.

2.
Hum Fertil (Camb) ; 24(5): 353-359, 2021 Dec.
Article in English | MEDLINE | ID: mdl-31661330

ABSTRACT

Women wishing to conceive are largely unaware of fertility symptoms at the time of ovulation. This study investigated the effectiveness of fertility-awareness in achieving pregnancy, particularly fertile mucus pattern, in the context of infertility. The 384 eligible participants were taken from consecutive women desiring pregnancy who attended 17 Australian Billings Ovulation Method® clinics from 1999-2003. This cohort included couples with infertility ≥12 months (51%) and female age >35 years (28%). Under fertility-awareness instruction, pregnancy was achieved by 240 couples (62.5%) after maximum follow-up of two years. Mucus symptom observations effectively stratified 'low pregnancy-potential' (35.2%) and 'high pregnancy-potential' groups. Pregnancy rates were ∼30% higher in the latter group (44.4% versus 72.3%) in addition to consistent effects observed on pregnancy achievements within subgroups defined by prognostic factors such as duration of infertility (p = 0.001) and increasing female age (p = 0.04). Fertile symptoms were also associated with significantly shorter time to conception (4.2 versus 6.4 months) in a survival analysis (p = 0.003). Billings Ovulation Method® observations strongly predicted successful conception. This has the capacity to provide a rapid, reliable and cost-effective approach to stratifying fertility potential, including directing timely and targeted investigations/management, and is accessible for women who may be remote from primary or specialist care.


Subject(s)
Cervix Mucus , Infertility , Adult , Australia , Female , Fertility , Fertilization , Humans , Pregnancy
3.
Front Plant Sci ; 11: 580389, 2020.
Article in English | MEDLINE | ID: mdl-33101348

ABSTRACT

Digital image processing is commonly used in plant health and growth analysis, aiming to improve research efficiency and repeatability. One focus is analysing the morphology of stomata, with the aim to better understand the regulation of gas exchange, its link to photosynthesis and water use and how they are influenced by climatic conditions. Despite the key role played by these cells, their microscopic analysis is largely manual, requiring intricate sample collection, laborious microscope application and the manual operation of a graphical user interface to identify and measure stomata. This research proposes a simple, end-to-end solution which enables automatic analysis of stomata by introducing key changes to imaging techniques, stomata detection as well as stomatal pore area calculation. An optimal procedure was developed for sample collection and imaging by investigating the suitability of using an automatic microscope slide scanner to image nail polish imprints. The use of the slide scanner allows the rapid collection of high-quality images from entire samples with minimal manual effort. A convolutional neural network was used to automatically detect stomata in the input image, achieving average precision, recall and F-score values of 0.79, 0.85, and 0.82 across four plant species. A novel binary segmentation and stomatal cross section analysis method is developed to estimate the pore boundary and calculate the associated area. The pore estimation algorithm correctly identifies stomata pores 73.72% of the time. Ultimately, this research presents a fast and simplified method of stomatal assay generation requiring minimal human intervention, enhancing the speed of acquiring plant health information.

4.
Plant Methods ; 13: 94, 2017.
Article in English | MEDLINE | ID: mdl-29151841

ABSTRACT

BACKGROUND: Stomatal behavior in grapevines has been identified as a good indicator of the water stress level and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However, most of the current approaches involve manual measurement of stomatal features. The main aim of this research is to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope images as the input. The proposed approach, which employs machine learning and image processing techniques, can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological features. RESULTS: First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a combination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata detection approach was compared with an existing fully automated template matching technique and a semi-automatic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletonization method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmentation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further comparisons made with manually traced stoma openings indicated that the proposed method is able to estimate stomata morphological features with accuracies of 89.03% for area, 94.06% for major axis length, 93.31% for minor axis length and 99.43% for eccentricity. CONCLUSIONS: The proposed fully automated solution for stomata detection and measurement is able to produce results far superior to existing automatic and semi-automatic methods. This method not only produces a low number of false positives in the stomata detection stage, it can also accurately estimate the pore dimensions of partially incomplete stomata images. In addition, it can process thousands of stomata in minutes, eliminating the need for researchers to manually measure stomata, thereby accelerating the process of analysing plant health.

SELECTION OF CITATIONS
SEARCH DETAIL
...