Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870015

ABSTRACT

There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity. Moreover, the inactivation of particular nbM sub-regions predominantly affects information transfer in cortical regions known to receive direct anatomical projections. We demonstrate these results in a simple neurodynamical model of cholinergic impact on neuronal firing rates and slow hyperpolarizing adaptation currents. We conclude that the cholinergic system plays a critical role in stabilizing macroscale brain state dynamics.


Subject(s)
Magnetic Resonance Imaging , Animals , Basal Nucleus of Meynert/physiology , Basal Nucleus of Meynert/metabolism , Acetylcholine/metabolism , Macaca mulatta , Male , Cholinergic Neurons/physiology , Cholinergic Neurons/metabolism , Cerebral Cortex/physiology , Cerebral Cortex/metabolism , Neurons/metabolism , Neurons/physiology , Models, Neurological
2.
Neuron ; 112(10): 1611-1625, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754373

ABSTRACT

Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.


Subject(s)
Consciousness , Thalamus , Thalamus/physiology , Consciousness/physiology , Humans , Animals , Neural Pathways/physiology , Neurons/physiology , Cerebral Cortex/physiology , Wakefulness/physiology
3.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37939085

ABSTRACT

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Subject(s)
Neurons , Pyramidal Cells , Animals , Neurons/physiology , Pyramidal Cells/physiology , Dendrites/physiology , Thalamus/physiology , Mammals
4.
Curr Res Neurobiol ; 3: 100036, 2022.
Article in English | MEDLINE | ID: mdl-36304590

ABSTRACT

Cognitive theories of consciousness, such as global workspace theory and higher-order theories, posit that frontoparietal circuits play a crucial role in conscious access. However, recent studies using no-report paradigms have posed a challenge to cognitive theories by demonstrating conscious accessibility in the apparent absence of prefrontal cortex (PFC) activation. To address this challenge, this paper presents a computational model of conscious access, based upon active inference, that treats working memory gating as a cognitive action. We simulate a visual masking task and show that late P3b-like event-related potentials (ERPs), and increased PFC activity, are induced by the working memory demands of self-report generation. When reporting demands are removed, these late ERPs vanish and PFC activity is reduced. These results therefore reproduce, and potentially explain, results from no-report paradigms. However, even without reporting demands, our model shows that simulated PFC activity on visible stimulus trials still crosses the threshold for reportability - maintaining the link between PFC and conscious access. Therefore, our simulations show that evidence provided by no-report paradigms does not necessarily contradict cognitive theories of consciousness.

5.
J Math Psychol ; 1072022 Apr.
Article in English | MEDLINE | ID: mdl-35340847

ABSTRACT

The active inference framework, and in particular its recent formulation as a partially observable Markov decision process (POMDP), has gained increasing popularity in recent years as a useful approach for modeling neurocognitive processes. This framework is highly general and flexible in its ability to be customized to model any cognitive process, as well as simulate predicted neuronal responses based on its accompanying neural process theory. It also affords both simulation experiments for proof of principle and behavioral modeling for empirical studies. However, there are limited resources that explain how to build and run these models in practice, which limits their widespread use. Most introductions assume a technical background in programming, mathematics, and machine learning. In this paper we offer a step-by-step tutorial on how to build POMDPs, run simulations using standard MATLAB routines, and fit these models to empirical data. We assume a minimal background in programming and mathematics, thoroughly explain all equations, and provide exemplar scripts that can be customized for both theoretical and empirical studies. Our goal is to provide the reader with the requisite background knowledge and practical tools to apply active inference to their own research. We also provide optional technical sections and multiple appendices, which offer the interested reader additional technical details. This tutorial should provide the reader with all the tools necessary to use these models and to follow emerging advances in active inference research.

6.
Front Neurosci ; 15: 602798, 2021.
Article in English | MEDLINE | ID: mdl-33762904

ABSTRACT

Measuring cognition in single subjects presents unique challenges. On the other hand, individually sensitive measurements offer extraordinary opportunities, from informing theoretical models to enabling truly individualised clinical assessment. Here, we test the robustness of fast, periodic, and visual stimulation (FPVS), an emerging method proposed to elicit detectable responses to written words in the electroencephalogram (EEG) of individual subjects. The method is non-invasive, passive, and requires only a few minutes of testing, making it a potentially powerful tool to test comprehension in those who do not speak or who struggle with long testing procedures. In an initial study, Lochy et al. (2015) used FPVS to detect word processing in eight out of 10 fluent French readers. Here, we attempted to replicate their study in a new sample of 10 fluent English readers. Participants viewed rapid streams of pseudo-words with words embedded at regular intervals, while we recorded their EEG. Based on Lochy et al. (2015) we expected that words would elicit a steady-state response at the word-presentation frequency (2 Hz) over parieto-occipital electrode sites. However, across 40 datasets (10 participants, two conditions, and two regions of interest-ROIs), only four datasets met the criteria for a unique response to words. This corresponds to a 10% detection rate. We conclude that FPVS should be developed further before it can serve as an individually-sensitive measure of written word processing.

7.
Prog Neurobiol ; 199: 101918, 2021 04.
Article in English | MEDLINE | ID: mdl-33039416

ABSTRACT

The global neuronal workspace (GNW) model has inspired over two decades of hypothesis-driven research on the neural basis of consciousness. However, recent studies have reported findings that are at odds with empirical predictions of the model. Further, the macro-anatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model - based on Active Inference - that captures central architectural elements of the GNW and is able to address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behavioural results observed in previous studies of inattentional blindness; and 2) the previously introduced four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.


Subject(s)
Consciousness , Attention , Bayes Theorem , Cognition , Humans , Neurons
8.
Conscious Cogn ; 73: 102763, 2019 08.
Article in English | MEDLINE | ID: mdl-31228697

ABSTRACT

Hohwy (2013) proposed an account of conscious access that integrates the global neuronal workspace (GNW) into the framework of predictive processing, a view that I term the predictive global neuronal workspace (PGNW). Whilst promising, the PGNW is theoretically underdeveloped and empirically underexplored. The aim of this article is to outline the empirical predictions that distinguish the PGNW from other workspace models. I do so by (i) placing the PGNW in close contact with experimental work and cashing out a set of predictions that distinguish it from the standard formulation of the GNW, (ii) exploring the evidence for the first of these predictions in the context of bistable perception and the conscious processing of auditory regularities, and (iii), contrasting the PGNW with Chanes and Barrett (2016) limbic workspace. Combined, these arguments show that the PGNW is both testable and supported by current evidence.


Subject(s)
Anticipation, Psychological/physiology , Brain/physiology , Consciousness/physiology , Models, Biological , Perception/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...