Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 92(4): 043559, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243393

ABSTRACT

Major parts of an IR-visible two-color interferometer (TCI) on KSTAR have been upgraded for the multi-chord operation: (1) a diode-pumped-solid-state (DPSS) laser (660 nm) replacing the former HeNe laser (633 nm), (2) vacuum-compatible vibration isolator with titanium retro-reflectors, and (3) full digital phase comparator for multi-chord real-time density signals. The commercial compact DPSS laser suits the multiple chord configuration with its strong beam power (500 mW) and long coherent length (>100 m). Ti retro-reflectors are mounted on vacuum-compatible vibration isolators. The isolators are essential for the visible beams to avoid any fringe skips due to their short wavelength, considering the speed of the mechanical vibration (up to hundreds of µm). Field-programmable-gate-array (FPGA) modules count the entire fringes fast enough with a signal output rate up to 1.25 MHz, solving the fringe skip issues. The FPGA module enables the full digital processing of the phase comparator with a CORDIC algorithm after the sampling rate of 160 MS/s for the 40 MHz intermediate frequency of each beam. The full digital signals are transferred to the main plasma control system in real-time. Stable single-input-single-output operation of the KSTAR density control was demonstrated with the TCI. The real-time density profile control is also promising in the near future, with multiple actuators such as pellets and gas puffings.

2.
Rev Sci Instrum ; 89(10): 10B111, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399651

ABSTRACT

A fringe jump compensation algorithm has been developed for a phase measurement that measures the phase within a single fringe. The algorithm is extremely useful in the case of the time-averaging zero-crossing phase detector on noisy environments. When the noise level on the measurements is not sufficiently suppressed, the signals near the fringe jump show a negative slope instead of a sharp drop. The slope brings an ambiguity over the compensation process. An algorithm with an additional channel that measures the phase of a half fringe shift has been applied in the millimeter-wave interferometer on the Korea Superconducting Tokamak Advanced Research device. These techniques removed the ambiguity in most cases. The algorithm can provide a most simple, robust, and cost-effective solution for the phase measurement system in various fields.

3.
Rev Sci Instrum ; 87(11): 11E131, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910476

ABSTRACT

The 2015 KSTAR experimental campaign was the first year of routine measurement with a far infrared interferometer (FIRI) utilizing 118.87 µm CH3OH lasers at maximum 200 mW CW beam power. By using rtEFIT reconstruction, the path lengths of interferometers can be calculated and so the line-averaged electron densities n¯e from the FIRI and a millimeter-wave interferometer were in excellent agreement. In this way, the number of successfully diagnosed discharges is counted: 1003 shots or 83.7% of sustained discharges, defined as shots of plasma current IP ≥ 0.3 MA with pulse lengths tf ≥ 2.0 s, have good-quality FIRI data within a few fringe jump errors. In addition, real-time H-mode density feedback control based on the FIRI was also successfully achieved with supersonic molecular beam injection as an actuator. Both constant density and controlled linear increment with a ramp-up rate of 1.0 × 1019 m-3 s-1 were achieved.

4.
Rev Sci Instrum ; 87(8): 083508, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27587124

ABSTRACT

An infrared (IR) thermography is the preferred diagnostic that can quantify heat flux by measuring the surface temperature distributions of the divertor plates. The IR thermography is successfully instrumented on Korea Superconducting Tokamak Advanced Research (KSTAR). In this study, finite volume method is considered to solve the heat conduction equations. 1D-, 2D-, and 3D models are developed and compared with various calculation algorithms, such as Duhamel's theorem and THEODOR. These comparisons show good agreement. In order to acquire more efficient and reliable calculation results, we consider two numerical analysis schemes, influence of temperature on thermal properties and image stabilization. Recently, this reconstruction code is successfully applied to the KSTAR IR thermography.

5.
Rev Sci Instrum ; 85(11): 11E409, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430316

ABSTRACT

The divertor Infrared television (IR TV) system for monitoring the temperature of a divertor and localized hot spots will be installed on the upper port of the N-port in the Korea Superconducting Tokamak Advanced Research (KSTAR). The cassette of KSTAR makes a periscope inevitable for the divertor IR TV. In this article, 4 design concepts for the periscope were examined, and the design based on Keplerian was shown to have better stabilities in alignment and the vibration. The final optics design based on an f-theta lens, Keplerian, and telecentric lens was derived.

6.
Rev Sci Instrum ; 85(11): 11E434, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430341

ABSTRACT

Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

7.
Rev Sci Instrum ; 84(8): 084702, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24007083

ABSTRACT

Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 10(19) m(-3) when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 µm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 µs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

8.
Rev Sci Instrum ; 81(10): 10D528, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033883

ABSTRACT

To measure the electron temperature (T(e)) and electron density (n(e)) profiles in the Korean Superconducting Tokamak Advanced Research (KSTAR) device for the KSTAR third campaign (September 2010), we designed and installed a Thomson scattering system. The KSTAR Thomson scattering system is designed as a tangential Thomson scattering system and utilizes the N-, L-, and B-ports. The N-port is designed for the collection optics with a cassette system, the L-port is the laser input port, and the B-port is the location of the beam dump. In this paper, we will describe the final design of the KSTAR Thomson scattering system.

SELECTION OF CITATIONS
SEARCH DETAIL
...