Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048944

ABSTRACT

Exterior finishes protect reinforced concrete buildings against environmental factors, improve their durability, and enhance their exterior design. In this study, the influence of different metal types used in arc thermal metal spraying on the adhesion between concrete and metal coatings was analyzed. Five metals with different melting points were tested, and the differences between their melting points and surface temperatures immediately after thermal spraying were measured. The bonding strength of each metal was evaluated. Additionally, the interface between the concrete surface and metal coating was analyzed using image analysis and optical microscopy. The results demonstrated that Zn achieved the highest bonding strength (1.84 MPa), which had the lowest melting point and surface temperature immediately after spraying, while Cu/Sn achieved the lowest strength (1.38 MPa), which had the highest temperatures. The bonding strength had a closer relationship (R2 = 0.9946) with the difference between the melting point and surface temperature immediately after spraying than that (R2 = 0.9589) with the surface temperature immediately after spraying. The bonding strength increased as the ratio of the non-interfacial failure area to the total area increased, ensuring a stronger attachment to the concrete surface. Overall, the results showed that the bonding strength was significantly affected by the metal type.

2.
Materials (Basel) ; 16(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36837002

ABSTRACT

The surface treatment of concrete enhances the bonding of its metal coatings. Therefore, in the present study, on the concrete surface, prior to the deposit of an 85Zn-15Al coating via an arc thermal spraying process, different surface treatments were considered for the effective electromagnetic pulse (EMP) shielding properties of the concrete. However, the direct coating on a concrete surface possesses lower bond adhesion, therefore it is of the utmost importance to treat the concrete surface prior to the deposition of the metal coating. Moreover, to obtain better bond adhesion and fill the defects of the coating, the concrete surface is treated by applying a surface hardener (SH), as well as a surface roughening agent (SRA) and a sealing agent (SA), respectively. The metal spraying efficiency, adhesion performance, and bonding strength under different concrete surface treatment conditions were evaluated. The EMP shielding effect was evaluated under the optimal surface treatment condition. The proposed method for EMP shielding exhibited over 60% of spraying efficiency on the treated surface and a bonding strength of up to 3.9 MPa for the SH-SRA-SA (combining surface roughening and pores/defects filling agents) specimen compared to the control one, i.e., 0.8 MPa. The EMP shielding values of the surface-treated concrete with surface hardener, surface roughening agent, and sealing agent, i.e., SH-SRA-SA specimens, exhibited 96.6 dB at 1000 MHz. This was about 12 times higher than without coated concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...