Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 113105, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461526

ABSTRACT

X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic x-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy x-ray light source facility using an x-ray transition-edge sensor (TES) microcalorimeter detector. The performance was compared with a silicon drift detector (SDD), an energy-resolving semiconductor detector, and Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles demonstrates the high-sensitivity to the low-Z elements and oxidation states. The line shape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is usually limited by the resolution of the semiconductor detector. We have characterized an x-ray TES microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source with a double crystal monochromator, providing monochromatic photon energies near 27.5 keV. The momentum resolution below 0.16 atomic units (a.u.) was measured, yielding an improvement of more than a factor of 7 over a state-of-the-art SDD for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an x-ray TES compared to smeared and broadened lineshapes observed when using the SDD. High-resolution Compton scattering using the energy-resolving area detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.

2.
ACS Appl Mater Interfaces ; 12(18): 20570-20578, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32271003

ABSTRACT

In an effort to improve the cycle life and rate capability of olivine LiCoPO4, Cr, Fe, and Si were added to produce nominal Li1.025Co0.84Fe0.10Cr0.05Si0.01(PO4)1.025. This cathode material has an energy density comparable to LiCoPO4, with markedly improved electrochemical performance. Here, we apply operando X-ray diffraction to gain an understanding of the crystallographic delithiation mechanism of this new substituted electrode material, compared to both LiCo0.75Fe0.25PO4 and LiCo0.75Fe0.25PO4. Throughout charging, the extent of solid-solution domains was significantly increased in Li1.025Co0.84Fe0.10Cr0.05Si0.01(PO4)1.025 and LiCo0.75Fe0.25PO4 compared to LiCoPO4. These domains reduce the mechanical strain during electrode function, providing a clear explanation for the high durability with Co substitution. Li1.025Co0.84Fe0.10Cr0.05Si0.01(PO4)1.025 operated at notably higher average potential than LiCo0.75Fe0.25PO4, which would increase the energy density of the cell. Ex situ measurements reveal the persistence of structural irreversibilities in the substituted phase after the first cycle, identifying avenues for further improvement in durability. This finding sheds light on the strategies for judicious cation substitution in LiCoPO4 electrodes to maximize the cycle life while preserving high energy density, especially compared to LiFePO4.

3.
Nano Lett ; 14(3): 1484-91, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24548146

ABSTRACT

Nanoparticle LiFePO4, the basis for an entire class of high power Li-ion batteries, has recently been shown to exist in binary lithiated/delithiated states at intermediate states of charge. The Mn-bearing version, LiMn(y)Fe(1-y)PO4, exhibits even higher rate capability as a lithium battery cathode than LiFePO4 of comparable particle size. To gain insight into the cause(s) of this desirable performance, the electrochemically driven phase transformation during battery charge and discharge of nanoscale LiMn0.4Fe0.6PO4 of three different average particle sizes, 52, 106, and 152 nm, is investigated by operando synchrotron radiation powder X-ray diffraction. In stark contrast to the binary lithiation states of pure LiFePO4 revealed in recent investigations, the formations of metastable solid solutions covering a remarkable wide compositional range, including while in two-phase coexistence, are observed. Detailed analysis correlates this behavior with small elastic misfits between phases compared to either pure LiFePO4 or LiMnPO4. On the basis of time- and state-of-charge dependence of the olivine structure parameters, we propose a coherent transformation mechanism. These findings illustrate a second, completely different phase transformation mode for pure well-ordered nanoscale olivines compared to the well-studied case of LiFePO4.

SELECTION OF CITATIONS
SEARCH DETAIL
...