Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Biol ; 26(10): 1156-1167, 2019 10.
Article in English | MEDLINE | ID: mdl-31009237

ABSTRACT

AXL is an important drug target for cancers. Two-dimensional quantitative structure-activity relationship (2D-QSAR) tests were performed to elucidate a relationship between molecular structures and the activity of a series of 400 curcumin derivatives subjected to AXL kinase by ATP competition in the catalytic site. The partial least square regression method implanted in molecular operating environment software was applied to develop QSAR models, which were further validated for statistical significance by internal and external validation. The best model has proven to be statistically robust with a good predictive correlation of R 2 = 0.996 and a significant cross-validation correlation coefficient of q 2 = 0.707. Docking analysis reveled that three curcumin derivatives have the best affinity for AXL and formed a hydrogen bond with the important amino acid residues in the binding pocket. As treated in this article, the docking studies and 2D-QSAR approach will pave the way for the development of new drugs while highlighting curcumin and its derivatives.


Subject(s)
Curcumin/analogs & derivatives , Curcumin/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/enzymology , Proto-Oncogene Proteins/metabolism , Quantitative Structure-Activity Relationship , Receptor Protein-Tyrosine Kinases/metabolism , Axl Receptor Tyrosine Kinase
2.
Bioinformation ; 14(9): 499-503, 2018.
Article in English | MEDLINE | ID: mdl-31223209

ABSTRACT

The abnormal activation of AKT/mTOR signaling pathway and overexpression of LMTK3, are the main factors involved in the generation of drug resistance. Therefore, the use of computer-aided drug design in the inhibitors discovery offers an advantage to provide new candidates for the treatment of this resistance. We realised the virtual screening and molecular docking of AKT1 and LMTK3 proteins by the Dockblaster server. In addition, with abundance of candidates under development for AKT1 kinase, we have also conducted a Quantitative Structure-Activity Relationship (QSAR) study based on these compounds, in order to design more active compounds and predict their activity for development of a new inhibitor of AKT1. QSAR tests were performed for AKT1 using the Partial Least Squares method with a correlation coefficient of R2=0.8062 and a cross-validation of q2=0.6995. This test has selected five compounds as competitive inhibitors-AKT1-ATP with a better biological activities. In parallel the molecular screening has selected five other compounds as competitive ATP-inhibitors of LMTK3. One of them is a common inhibitor with AKT1, and it is marketed as a moderate to severe pain therapy. The ADME predictions confirmed the inhibitors pharmacological activity of these compounds for potential consideration as drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...