Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(11): 7386-7399, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38459944

ABSTRACT

In situ tender X-ray absorption near-edge structure (XANES) spectroscopy at the P K-edge was utilized to investigate the oxidation mechanism of aqueous H3PO3 on Pt electrodes under various conditions relevant to high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. XANES and electrochemical analysis were conducted under different tender X-ray irradiation doses, revealing that intense radiation induces the oxidation of aqueous H3PO3 via H2O yielding H3PO4 and H2. A broadly applicable experimental procedure was successfully developed to suppress these undesirable radiation-induced effects, enabling a more accurate determination of the aqueous H3PO3 oxidation mechanism. In situ XANES studies of aqueous 5 mol dm-3 H3PO3 on electrodes with varying Pt availability and surface roughness reveal that Pt catalyzes the oxidation of aqueous H3PO3 to H3PO4. This oxidation is enhanced upon applying a positive potential to the Pt electrode or raising the electrolyte temperature, the latter being corroborated by complementary ion-exchange chromatography measurements. Notably, all of these oxidation processes involve reactions with H2O, as further supported by XANES measurements of aqueous H3PO3 of different concentrations, showing a more pronounced oxidation in electrolytes with a higher H2O content. The significant role of water in the oxidation of H3PO3 to H3PO4 supports the reaction mechanisms proposed for various chemical processes observed in this work and provides valuable insights into potential strategies to mitigate Pt catalyst poisoning by H3PO3 during HT-PEMFC operation.

2.
Article in English | MEDLINE | ID: mdl-37890003

ABSTRACT

The oxidation of the aqueous H3PO3 in contact with Pt was investigated for a fundamental understanding of the Pt/aqueous H3PO3 interaction with the goal of providing a comprehensive basis for the further optimization of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Ion-exchange chromatography (IEC) experiments suggested that in ambient conditions, Pt catalyzes H3PO3 oxidation to H3PO4 with H2O. X-ray photoelectron spectroscopy (XPS) on different substrates, including Au and Pt, previously treated in H3PO3 solutions was conducted to determine the catalytic abilities of selected metals toward H3PO3 oxidation. In situ ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES) combined with the "dip-and-pull" method was performed to investigate the state of H3PO3 at the Pt|H3PO3 interface and in the bulk solution. It was shown that whereas H3PO3 remains stable in the bulk solution, the catalyzed oxidation of H3PO3 by H2O to H3PO4 accompanied by H2 generation occurs in contact with the Pt surface. This catalytic process likely involves H3PO3 adsorption at the Pt surface in a highly reactive pyramidal tautomeric configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...