Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38949279

ABSTRACT

Magnetometer cell wall coat molecules play an important role in preserving the lifetime of pumped alkali metal atoms for use in magnetometers that are capable of measuring very small magnetic fields. The goal of this study is to help rationalize the design of the cell coat molecules. Rubidium-87 is studied in terms of its interaction with three template cell coat molecules: ethane, ethene, and methyltrichlorosilane (MeTS). Ab initio electronic structure methods are applied to investigate the effect that the coat molecules have on the 2S ground state and 2P excited state of 87Rb. We find that, from the ab initio results, the three template molecules have differing effects, with MeTS having the largest effect on the ground state and ethane or ethene having the largest effect on the non-degenerate excited states.

2.
Phys Chem Chem Phys ; 26(21): 15156-15180, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747576

ABSTRACT

The extension of conceptual density-functional theory (conceptual DFT) to include external electromagnetic fields in chemical systems is utilised to investigate the effects of strong magnetic fields on the electronic charge distribution and its consequences on the reactivity of π-systems. Formaldehyde, H2CO, is considered as a prototypical example and current-density-functional theory (current-DFT) calculations are used to evaluate the electric dipole moment together with two principal local conceptual DFT descriptors, the electron density and the Fukui functions, which provide insight into how H2CO behaves chemically in a magnetic field. In particular, the symmetry properties of these quantities are analysed on the basis of group, representation, and corepresentation theories using a recently developed automatic program for symbolic symmetry analysis, QSYM2. This allows us to leverage the simple symmetry constraints on the macroscopic electric dipole moment components to make profound predictions on the more nuanced symmetry transformation properties of the microscopic frontier molecular orbitals (MOs), electron densities, and Fukui functions. This is especially useful for complex-valued MOs in magnetic fields whose detailed symmetry analyses lead us to define the new concepts of modular and phasal symmetry breaking. Through these concepts, the deep connection between the vanishing constraints on the electric dipole moment components and the symmetry of electron densities and Fukui functions can be formalised, and the inability of the magnetic field in all three principal orientations considered to induce asymmetry with respect to the molecular plane of H2CO can be understood from a molecular perspective. Furthermore, the detailed forms of the Fukui functions reveal a remarkable reversal in the direction of the dipole moment along the CO bond in the presence of a parallel or perpendicular magnetic field, the origin of which can be attributed to the mixing between the frontier MOs due to their subduced symmetries in magnetic fields. The findings in this work are also discussed in the wider context of a long-standing debate on the possibility to create enantioselectivity by external fields.

3.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38180252

ABSTRACT

In density-functional theory, the exchange-correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r'), representing the probability depletion of finding an electron at r' due to an electron at r. Accurate knowledge of n̄xc(r,r') has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron-electron cusp using finite basis sets. Focusing on Hooke's atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke's atoms, the error introduced by the description of the electron-electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew-Burke-Ernzerhof and local density approximation XC hole models are assessed.

4.
J Chem Theory Comput ; 20(1): 114-133, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38145888

ABSTRACT

Symmetry provides a powerful machinery to classify, interpret, and understand quantum-mechanical theories and results. However, most contemporary quantum chemistry packages lack the ability to handle degeneracy and symmetry breaking effects, especially in non-Abelian groups, and they are not able to characterize symmetry in the presence of external magnetic or electric fields. In this article, a program written in Rust entitled QSym2 that makes use of group and representation theories to provide symmetry analysis for a wide range of quantum-chemical calculations is introduced. With its ability to generate character tables symbolically on-the-fly and by making use of a generic symmetry-orbit-based representation analysis method formulated in this work, QSym2 is able to address all of these shortcomings. To illustrate these capabilities of QSym2, four sets of case studies are examined in detail in this article: (i) high-symmetry C84H64, C60, and B9- to demonstrate the analysis of degenerate molecular orbitals (MOs); (ii) octahedral Fe(CN)63- to demonstrate the analysis of symmetry-broken determinants and MOs; (iii) linear hydrogen fluoride in a magnetic field to demonstrate the analysis of magnetic symmetry; and (iv) equilateral H3+ to demonstrate the analysis of density symmetries.

5.
J Chem Phys ; 159(20)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38018753

ABSTRACT

We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet's linearity remains valid up to roughly 10-20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao-Perdew-Staroverov-Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.

6.
J Chem Theory Comput ; 19(18): 6226-6241, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37672773

ABSTRACT

A general scheme is presented to extend semiempirical methods to include the effects of arbitrary strength magnetic fields, while maintaining computational efficiency. The approach utilizes three main modifications; a London atomic orbital (LAO) basis set is introduced, field-dependent kinetic energy corrections are added to the model Hamiltonian, and spin-Zeeman interaction energy terms are included. The approach is applied to the widely available density-functional tight-binding method GFN1-xTB. Considering the basis set requirements for the kinetic energy corrections in a magnetic field leads to two variants: a single-basis approach GFN1-xTB-M0 and a dual-basis approach GFN1-xTB-M1. The LAO basis in the latter includes the appropriate nodal structure for an accurate representation of the kinetic energy corrections. The variants are assessed by benchmarking magnetizabilities and nuclear magnetic resonance shielding constants calculated using weak magnetic fields. Remarkably, the GFN1-xTB-M1 approach also exhibits excellent performance for strong fields, |B| ≤ 0.2B0 (B0 = 2.3505 × 105 T), recovering exotic features such as the para- to dia-magnetic transition in the BH molecule and the preferred electronic configuration, molecular conformation, and orientation of benzene. At stronger field strengths, |B| > 0.2B0, a degradation in the quality of the results is observed. The utility of GFN1-xTB-M1 is demonstrated by performing conformer searches in a range of field strengths for the cyclooctatetraene molecule, with GFN1-xTB-M1 capturing the transition from tub to planar conformations at high field, consistent with much more computationally demanding current-density functional theory calculations. Magnetically induced currents are also shown to be well described for the benzene and infinitene molecules, the latter demonstrating the flexibility and computational efficiency of the approach. The GFN1-xTB-M1 approach is a useful tool for the study of structure, conformation, and dynamics of large systems in magnetic fields at the semiempirical level as well as for preoptimization of molecular structure in ab initio calculations, enabling more efficient exploration of complex potential energy surfaces and reactivity in the presence of external fields.

7.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37681694

ABSTRACT

The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the literature for the hydrogen atom and H2 in the presence of rapidly oscillating magnetic fields. This comparison is used to inform the choice of appropriate basis sets for studies under such conditions. Remarkably, relatively modest compact LAO basis sets are sufficient to obtain accurate results. Analysis of electron dynamics in the hydrogen atom shows that LAO calculations correctly capture the time evolution of orbital occupations. The Fourier transformation of the autocorrelation function yields a power spectrum exhibiting harmonics associated with coherent emission, which closely matches the literature and further confirms the accuracy of this approach. The dynamical response of the electron density in H2 for a magnetic field parallel to the internuclear axis shows similar behavior to benchmark studies. The flexibility of this implementation is then demonstrated by considering how the dynamical response changes as a function of the orientation of the molecule relative to the applied field. At non-parallel orientations, the symmetry of the system is lowered and numerical benchmark data, which exploit cylindrical symmetry, are no-longer readily available. The present study demonstrates the utility of LAO-based calculations for extreme dynamic magnetic fields, providing a stress-test on the choice of basis. Future applications of this approach for less extreme dynamic magnetic fields are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...