Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37398419

ABSTRACT

The transcription factor achaete-scute complex homolog 1 (ASCL1) is a lineage oncogene that is central for the growth and survival of small cell lung cancers (SCLC) and neuroendocrine non-small cell lung cancers (NSCLC-NE) that express it. Targeting ASCL1, or its downstream pathways, remains a challenge. However, a potential clue to overcoming this challenage has been information that SCLC and NSCLC-NE that express ASCL1 exhibit extremely low ERK1/2 activity, and efforts to increase ERK1/2 activity lead to inhibition of SCLC growth and surival. Of course, this is in dramatic contrast to the majority of NSCLCs where high activity of the ERK pathway plays a major role in cancer pathogenesis. A major knowledge gap is defining the mechanism(s) underlying the low ERK1/2 activity in SCLC, determining if ERK1/2 activity and ASCL1 function are inter-related, and if manipulating ERK1/2 activity provides a new therapeutic strategy for SCLC. We first found that expression of ERK signaling and ASCL1 have an inverse relationship in NE lung cancers: knocking down ASCL1 in SCLCs and NE-NSCLCs increased active ERK1/2, while inhibition of residual SCLC/NSCLC-NE ERK1/2 activity with a MEK inhibitor increased ASCL1 expression. To determine the effects of ERK activity on expression of other genes, we obtained RNA-seq from ASCL1-expressing lung tumor cells treated with an ERK pathway MEK inhibitor and identified down-regulated genes (such as SPRY4, ETV5, DUSP6, SPRED1) that potentially could influence SCLC/NSCLC-NE tumor cell survival. This led us to discover that genes regulated by MEK inhibition suppress ERK activation and CHIP-seq demonstrated these are bound by ASCL1. In addition, SPRY4, DUSP6, SPRED1 are known suppressors of the ERK1/2 pathway, while ETV5 regulates DUSP6. Survival of NE lung tumors was inhibited by activation of ERK1/2 and a subset of ASCL1-high NE lung tumors expressed DUSP6. Because the dual specificity phosphatase 6 (DUSP6) is an ERK1/2-selective phosphatase that inactivates these kinases and has a pharmacologic inhibitor, we focused mechanistic studies on DUSP6. These studies showed: Inhibition of DUSP6 increased active ERK1/2, which accumulated in the nucleus; pharmacologic and genetic inhibition of DUSP6 affected proliferation and survival of ASCL1-high NE lung cancers; and that knockout of DUSP6 "cured" some SCLCs while in others resistance rapidly developed indicating a bypass mechanism was activated. Thus, our findings fill this knowledge gap and indicate that combined expression of ASCL1, DUSP6 and low phospho-ERK1/2 identify some neuroendocrine lung cancers for which DUSP6 may be a therapeutic target.

2.
Biochemistry ; 62(9): 1433-1442, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37021821

ABSTRACT

The most frequent ERK2 (MAPK1) mutation in cancers, E322K, lies in the common docking (CD) site, which binds short motifs made up of basic and hydrophobic residues present in the activators MEK1 (MAP2K1) and MEK2 (MAP2K2), in dual specificity phosphatases (DUSPs) that inactivate the kinases, and in many of their substrates. Also, part of the CD site, but mutated less often in cancers, is the preceding aspartate (D321N). These mutants were categorized as gain of function in a sensitized melanoma system. In Drosophila developmental assays, we found that the aspartate but not the glutamate mutant caused gain-of-function phenotypes. Here, we catalogued additional properties of these mutants to accrue greater insight into their functions. A modest increase in nuclear retention of E322K was noted. Binding of ERK2 E322K and D321N to a small group of substrates and regulatory proteins was similar, in spite of differences in CD site integrity. Interactions with a second docking site, the F site, which should be more accessible in E322K, were modestly reduced rather than increased. The crystal structure of ERK2 E322K also indicated a disturbed dimer interface, and reduced dimerization was detected by a two-hybrid test; yet, it was detected in dimers in EGF-treated cells, although to a lesser extent than D321N or wt ERK2. These findings indicate a range of small differences in behaviors that may contribute to increased function of E322K in certain cancers.


Subject(s)
Aspartic Acid , Drosophila Proteins , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1 , Animals , Drosophila , MAP Kinase Signaling System/physiology , Mutation , Phosphorylation , Mitogen-Activated Protein Kinase 1/genetics , Drosophila Proteins/genetics , Protein Multimerization
3.
Proc Natl Acad Sci U S A ; 119(30): e2203743119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867836

ABSTRACT

Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-ß signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-ß-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-ß interactome. However, molecular events jointly regulated by TGF-ß and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-ß-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-ß-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-ß. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-ß-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-ß-regulated functions.


Subject(s)
Endothelial Cells , Intercellular Junctions , Neovascularization, Physiologic , Transforming Growth Factor beta , WNK Lysine-Deficient Protein Kinase 1 , Animals , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Mice , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Proteolysis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Transforming Growth Factor beta/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , Axl Receptor Tyrosine Kinase
4.
Mol Cancer Ther ; 20(10): 1800-1808, 2021 10.
Article in English | MEDLINE | ID: mdl-34253593

ABSTRACT

Metastasis is the major cause of mortality in patients with breast cancer. Many signaling pathways have been linked to cancer invasiveness, but blockade of few protein components has succeeded in reducing metastasis. Thus, identification of proteins contributing to invasion that are manipulable by small molecules may be valuable in inhibiting spread of the disease. The protein kinase with no lysine (K) 1 (WNK1) has been suggested to induce migration of cells representing a range of cancer types. Analyses of mouse models and patient data have implicated WNK1 as one of a handful of genes uniquely linked to invasive breast cancer. Here, we present evidence that inhibition of WNK1 slows breast cancer metastasis. We show that depletion or inhibition of WNK1 reduces migration of several breast cancer cell lines in wound healing assays and decreases invasion in collagen matrices. Furthermore, WNK1 depletion suppresses expression of AXL, a tyrosine kinase implicated in metastasis. Finally, we demonstrate that WNK inhibition in mice attenuates tumor progression and metastatic burden. These data showing reduced migration, invasion, and metastasis upon WNK1 depletion in multiple breast cancer models suggest that WNK1 contributes to the metastatic phenotype, and that WNK1 inhibition may offer a therapeutic avenue for attenuating progression of invasive breast cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Female , Humans , Imidazoles/pharmacology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Pyrrolidines/pharmacology , Tumor Cells, Cultured , WNK Lysine-Deficient Protein Kinase 1/antagonists & inhibitors , WNK Lysine-Deficient Protein Kinase 1/genetics , Xenograft Model Antitumor Assays
5.
Front Cell Dev Biol ; 8: 618898, 2020.
Article in English | MEDLINE | ID: mdl-33604334

ABSTRACT

Cytoskeletal structure and its regulation are essential for maintenance of the differentiated state of specific types of cells and their adaptation to physiologic and pathophysiologic conditions. Renal glomerular capillaries, composed of podocytes, endothelial cells, and the glomerular basement membrane, have distinct structural and biophysical properties and are the site of injury in many glomerular diseases. Calcineurin inhibitors, immunosuppressant drugs used for organ transplantation and auto-immune diseases, can protect podocytes and glomerular capillaries from injury by preserving podocyte cytoskeletal structure. These drugs cause complications including hypertension and hyperkalemia which are mediated by WNK (With No Lysine) kinases as well as vasculopathy with glomerulopathy. WNK kinases and their target kinases oxidative stress-responsive kinase 1 (OSR1) and SPS1-related proline/alanine-rich kinase (SPAK) have fundamental roles in angiogenesis and are activated by calcineurin inhibitors, but the actions of these agents on kidney vasculature, and glomerular capillaries are not fully understood. We investigated WNK1 expression in cultured podocytes and isolated mouse glomerular capillaries to determine if WNK1 contributes to calcineurin inhibitor-induced preservation of podocyte and glomerular structure. WNK1 and OSR1/SPAK are expressed in podocytes, and in a pattern similar to podocyte synaptopodin in glomerular capillaries. Calcineurin inhibitors increased active OSR1/SPAK in glomerular capillaries, the Young's modulus (E) of glomeruli, and the F/G actin ratio, effects all blocked by WNK inhibition. In glomeruli, WNK inhibition caused reduced and irregular synaptopodin-staining, abnormal capillary and foot process structures, and increased deformability. In cultured podocytes, FK506 activated OSR1/SPAK, increased lamellipodia, accelerated cell migration, and promoted traction force. These actions of FK506 were reduced by depletion of WNK1. Collectively, these results demonstrate the importance of WNK1 in regulation of the podocyte actin cytoskeleton, biophysical properties of glomerular capillaries, and slit diaphragm structure, all of which are essential to normal kidney function.

6.
Proc Natl Acad Sci U S A ; 116(31): 15514-15523, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31296562

ABSTRACT

The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Mutation/genetics , Animals , Animals, Genetically Modified , Crystallography, X-Ray , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Enzyme Activation , Enzyme Stability , Extracellular Signal-Regulated MAP Kinases/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Models, Molecular , Mutant Proteins/metabolism
8.
Autophagy ; 13(5): 969-970, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28282258

ABSTRACT

Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/physiology , Signal Transduction/physiology , WNK Lysine-Deficient Protein Kinase 1/metabolism , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
9.
Proc Natl Acad Sci U S A ; 113(50): 14342-14347, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911840

ABSTRACT

The with-no-lysine (K) (WNK) kinases are an atypical family of protein kinases that regulate ion transport across cell membranes. Mutations that result in their overexpression cause hypertension-related disorders in humans. Of the four mammalian WNKs, only WNK1 is expressed throughout the body. We report that WNK1 inhibits autophagy, an intracellular degradation pathway implicated in several human diseases. Using small-interfering RNA-mediated WNK1 knockdown, we show autophagosome formation and autophagic flux are accelerated. In cells with reduced WNK1, basal and starvation-induced autophagy is increased. We also show that depletion of WNK1 stimulates focal class III phosphatidylinositol 3-kinase complex (PI3KC3) activity, which is required to induce autophagy. Depletion of WNK1 increases the expression of the PI3KC3 upstream regulator unc-51-like kinase 1 (ULK1), its phosphorylation, and activation of the kinase upstream of ULK1, the AMP-activated protein kinase. In addition, we show that the N-terminal region of WNK1 binds to the UV radiation resistance-associated gene (UVRAG) in vitro and WNK1 partially colocalizes with UVRAG, a component of a PI3KC3 complex. This colocalization decreases upon starvation of cells. Depletion of the SPS/STE20-related proline-alanine-rich kinase, a WNK1-activated enzyme, also induces autophagy in nutrient-replete or -starved conditions, but depletion of the related kinase and WNK1 substrate, oxidative stress responsive 1, does not. These results indicate that WNK1 inhibits autophagy by multiple mechanisms.


Subject(s)
Autophagy/physiology , WNK Lysine-Deficient Protein Kinase 1/physiology , Autophagy/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line , Class III Phosphatidylinositol 3-Kinases/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , WNK Lysine-Deficient Protein Kinase 1/antagonists & inhibitors , WNK Lysine-Deficient Protein Kinase 1/genetics
10.
ACS Sens ; 1(10): 1208-1212, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27819058

ABSTRACT

High throughput screening of insulin secretion is intractable with current methods. We developed a secreted insulin-luciferase system (Ins-GLuc) in ß cells that is rapid, inexpensive, and amenable to 96- and 384-well formats. We treated stable Ins-GLuc-expressing MIN6 cells overnight with 6298 marine natural product fractions. The cells were then washed to remove media and chemicals, followed by stimulation with glucose in the diazoxide paradigm. These conditions allowed the discovery of many insulin secretion suppressors and potentiators. The mechanisms of action of these natural products must be long-lasting given the continuance of secretory phenotypes in the absence of chemical treatment. We anticipate that these natural products and their target pathways will lead to a greater understanding of glucose-stimulated insulin secretion.

11.
Circ Res ; 119(7): 810-26, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27486147

ABSTRACT

RATIONALE: Vascular tubulogenesis is essential to cardiovascular development. Within initial vascular cords of endothelial cells, apical membranes are established and become cleared of cell-cell junctions, thereby allowing continuous central lumens to open. Rasip1 (Ras-interacting protein 1) is required for apical junction clearance, as well as for regulation of Rho GTPase (enzyme that hydrolyzes GTP) activity. However, it remains unknown how activities of different Rho GTPases are coordinated by Rasip1 to direct tubulogenesis. OBJECTIVE: The aim of this study is to determine the mechanisms downstream of Rasip1 that drive vascular tubulogenesis. METHODS AND RESULTS: Using conditional mouse mutant models and pharmacological approaches, we dissect GTPase pathways downstream of Rasip1. We show that clearance of endothelial cell apical junctions during vascular tubulogenesis depends on Rasip1, as well as the GTPase Cdc42 (cell division control protein 42 homolog) and the kinase Pak4 (serine/threonine-protein kinase 4). Genetic deletion of Rasip1 or Cdc42, or inhibition of Pak4, all blocks endothelial cell tubulogenesis. By contrast, inactivation of RhoA (Ras homologue gene family member A) signaling leads to vessel overexpansion, implicating actomyosin contractility in control of lumen diameter. Interestingly, blocking activity of NMII (nonmuscle myosin II) either before, or after, lumen morphogenesis results in dramatically different tubulogenesis phenotypes, suggesting time-dependent roles. CONCLUSIONS: Rasip1 controls different pools of GTPases, which in turn regulate different pools of NMII to coordinate junction clearance (remodeling) and actomyosin contractility during vascular tubulogenesis. Rasip1 promotes activity of Cdc42 to activate Pak4, which in turn activates NMII, clearing apical junctions. Once lumens open, Rasip1 suppresses actomyosin contractility via inhibition of RhoA by Arhgap29, allowing controlled expansion of vessel lumens during embryonic growth. These findings elucidate the stepwise processes regulated by Rasip1 through downstream Rho GTPases and NMII.


Subject(s)
Blood Vessels/embryology , Blood Vessels/metabolism , Carrier Proteins/physiology , Myosin Type II/metabolism , Signal Transduction/physiology , rho GTP-Binding Proteins/metabolism , Animals , Embryonic Development/physiology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Mice , Pregnancy
12.
ACS Chem Biol ; 11(4): 1128-36, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26828310

ABSTRACT

Novel strategies are needed to modulate ß-cell differentiation and function as potential ß-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on ß-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and ß-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters ß-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of ß-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts.


Subject(s)
Cell Proliferation/drug effects , Gene Expression/drug effects , Islets of Langerhans/drug effects , Isoxazoles/pharmacology , Humans , Islets of Langerhans/cytology
13.
Nat Chem Biol ; 11(1): 58-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25402767

ABSTRACT

A fundamental challenge in treating disease is identifying molecular states that affect cellular responses to drugs. Here, we focus on glycogen synthase kinase 3 (GSK-3), a key regulator for many of the hallmark behaviors of cancer cells. We alter GSK-3 activity in colon epithelial cells to test its role in modulating drug response. We find that GSK-3 activity broadly affects the cellular sensitivities to a panel of oncology drugs and kinase inhibitors. Specifically, inhibition of GSK-3 activity can strongly desensitize or sensitize cells to kinase inhibitors (for example, mTOR or PLK1 inhibitors, respectively). Additionally, colorectal cancer cell lines, in which GSK-3 function is commonly suppressed, are resistant to mTOR inhibitors and yet highly sensitive to PLK1 inhibitors, and this is further exacerbated by additional GSK-3 inhibition. Finally, by conducting a kinome-wide RNAi screen, we find that GSK-3 modulates the cell proliferative phenotype of a large fraction (∼35%) of the kinome, which includes ∼50% of current, clinically relevant kinase-targeted drugs. Our results highlight an underappreciated interplay of GSK-3 with therapeutically important kinases and suggest strategies for identifying disease-specific molecular profiles that can guide optimal selection of drug treatment.


Subject(s)
Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/physiology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Polo-Like Kinase 1
15.
J Biomol Screen ; 16(9): 995-1006, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21859680

ABSTRACT

Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (ß-catenin and Axin) in opposing fashion. We have now fused ß-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts.


Subject(s)
High-Throughput Screening Assays , Small Molecule Libraries , Wnt Signaling Pathway/drug effects , Animals , Axin Protein/metabolism , Enzyme Assays , Flavones/pharmacology , HEK293 Cells , HeLa Cells , Humans , Luciferases/metabolism , Reproducibility of Results , Xenopus laevis/metabolism , beta Catenin/metabolism
16.
Mol Syst Biol ; 6: 369, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20461076

ABSTRACT

Phenotypic heterogeneity has been widely observed in cellular populations. However, the extent to which heterogeneity contains biologically or clinically important information is not well understood. Here, we investigated whether patterns of basal signaling heterogeneity, in untreated cancer cell populations, could distinguish cellular populations with different drug sensitivities. We modeled cellular heterogeneity as a mixture of stereotyped signaling states, identified based on colocalization patterns of activated signaling molecules from microscopy images. We found that patterns of heterogeneity could be used to separate the most sensitive and resistant populations to paclitaxel within a set of H460 lung cancer clones and within the NCI-60 panel of cancer cell lines, but not for a set of less heterogeneous, immortalized noncancer human bronchial epithelial cell (HBEC) clones. Our results suggest that patterns of signaling heterogeneity, characterized as ensembles of a small number of distinct phenotypic states, can reveal functional differences among cellular populations.


Subject(s)
Drug Resistance, Neoplasm/genetics , Genetic Heterogeneity , Intracellular Signaling Peptides and Proteins/genetics , Biomarkers, Tumor/genetics , Cell Line, Transformed , Cell Line, Tumor , Humans , Microscopy, Fluorescence , Multivariate Analysis , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Paclitaxel/pharmacology , Signal Transduction/genetics , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...