Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Food Res Int ; 186: 114348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729721

ABSTRACT

During production of soy-based infant formula, soy protein undergoes heating processes. This study investigated the differential impact of heating modes on the immunogenic potential of peptides in soy protein digests. Wet or dry heating was applied, followed by in vitro gastrointestinal infant digestion. The released peptides were analyzed by LC-MS/MS. Bioinformatics tools were utilized to predict and identify potential linear B-cell and T-cell epitopes, as well as to explore cross-reactivity with other legumes. Subsequently, the peptide intensities of the same potential epitope across different experimental conditions were compared. As a result, we confirmed the previously observed enhancing effect of wet heating on infant digestion and inhibitory effect of dry heating. A total of 8,546 peptides were detected in the digests, and 6,684 peptides were with a score over 80. Among them, 29 potential T-cell epitopes and 27 potential B-cell epitopes were predicted. Cross-reactivity between soy and other legumes, including peanut, pea, chickpea, lentil, kidney bean, and lupine, was also detected. Overall, heating and digestion time could modulate the potential to trigger peptide-induced immune responses.


Subject(s)
Digestion , Hot Temperature , Peptides , Soybean Proteins , Tandem Mass Spectrometry , Humans , Soybean Proteins/immunology , Soybean Proteins/chemistry , Peptides/immunology , Peptides/chemistry , Infant , Infant Formula/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Cross Reactions , Heating , Chromatography, Liquid
2.
Food Res Int ; 183: 114224, 2024 May.
Article in English | MEDLINE | ID: mdl-38760143

ABSTRACT

During infant formula production, proteins are always heated, potentially affecting their digestibility and the bioactivities of resulting peptides. Although plant proteins are a promising dairy alternative for infant formula, they remain understudied, necessitating further investigations. Therefore, this research aimed to fill this gap by assessing the impact of different heating modes on soy protein (SP) and pea protein (PP), focusing on glycation levels, peptide formation during in vitro infant digestion, and immune protection potential (sRAGE-binding and antimicrobial activities) of the resulting peptides. Consequently, dry heating led to increased glycation and glycated peptide production, particularly with higher glycation in PP than SP. Moreover, PP exhibited an overall stronger sRAGE-binding capacity than SP, regardless of heating and digestion conditions. Regarding antimicrobial activity, both SP and PP-derived peptides displayed reduced effectiveness against Enterobacter cloacae after dry heating. Additionally, Staphylococcus epidermidis was differently inhibited, where PP-derived peptides showed inherent inhibition. The primary determinant of sRAGE-binding and antimicrobial potential in digestion-derived peptides was the protein source. Subsequent bioinformatics analysis predicted 519 and 133 potential antimicrobial peptides in SP and PP, respectively. This study emphasises the importance of protein source for infant formula to ensure infant health.


Subject(s)
Digestion , Hot Temperature , Infant Formula , Pea Proteins , Soybean Proteins , Soybean Proteins/metabolism , Humans , Infant Formula/chemistry , Infant , Pea Proteins/metabolism , Pea Proteins/chemistry , Receptor for Advanced Glycation End Products/metabolism , Antimicrobial Peptides/metabolism , Anti-Infective Agents/pharmacology
3.
Food Chem ; 450: 139346, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38621311

ABSTRACT

This research compared the effects of dry heating on the digestion of goat milk proteins with different casein-to-whey ratios (40% casein, C40 and 80% casein, C80). The glycation markers of heated samples were determined by LC-MS. Heating at 60 °C for 8 h induced early glycation while heating at 60 °C for 72 h induced advanced glycation. Unheated C80 samples showed a higher digestibility than unheated C40 samples, which may be due to their higher protein solubility. After dry heating for 72 h, no significant difference in digestibility was observed between C80 and C40 samples. Heating for 72 h decreased the digestibility of C40 samples compared to unheated samples, probably due to glycation, while protein aggregation was the main reason for the reduced digestibility of heated C80 samples. Overall, this study showed that dry heating for 72 h induced a lower digestibility of C80 and C40 samples, although with different underlying mechanisms.


Subject(s)
Caseins , Digestion , Goats , Hot Temperature , Milk , Whey Proteins , Animals , Caseins/chemistry , Caseins/metabolism , Milk/chemistry , Glycosylation , Humans , Whey Proteins/chemistry , Whey Proteins/metabolism , Models, Biological
4.
Curr Res Food Sci ; 7: 100588, 2023.
Article in English | MEDLINE | ID: mdl-37781412

ABSTRACT

Important considerations in the choice of future sustainable protein sources for human application are tolerance, nutritional quality, and potential health benefits. We evaluated, in a double-blind cross-over intervention trial, tolerance, nutritional quality, and potential health effects of two sustainable protein sources. Thirty-six apparently healthy older adults (age 62.3 ± 7.2yrs, BMI 25 ± 3 kg/m2) received 40 g/day bovine-plasma protein (BP), corn protein (CP) or, as a benchmark, whey protein (WP) for one week with a washout period of one week in-between. In 12 participants, we also determined postprandial amino acid (PAA) uptake kinetics upon consumption of 20 g BP, CP, or WP. Changes in self-reported gastrointestinal complaints and intestinal permeability assessed using a multi-sugar acetylsalicylic acid test did not differ between the interventions. Clear differences in PAA responses were observed after consumption of the different proteins, but clear essential amino acid responses were observed for all proteins. BP consumption resulted in a small but significant increase in blood pressure outcomes, and CP consumption resulted in a small but significant decrease in insulin levels when compared to the other interventions. In conclusion, alternative protein concentrates and isolates studied here can be consumed in relative high quantities without experiencing unwanted GI complaints or gut barrier dysfunction and they can be a good source of essential amino acids. The rise in blood pressure observed during the BP intervention, potentially linked to the elevated salt content of the BP, constitutes a potential health issue. Future studies with longer intervention periods might however be recommended.

5.
Nutrients ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904179

ABSTRACT

Accelerating the induction of tolerance to cow's milk (CM) reduces the burden of cow's milk allergy (CMA). In this randomised controlled intervention study, we aimed to investigate the tolerance induction of a novel heated cow milk protein, the iAGE product, in 18 children with CMA (diagnosed by a paedriatric allergist). Children who tolerated the iAGE product were included. The treatment group (TG: n = 11; mean age 12.8 months, SD = 4.7) consumed the iAGE product daily with their own diet, and the control group (CG: n = 7; mean age 17.6 months, SD = 3.2) used an eHF without any milk consumption. In each group, 2 children had multiple food allergies. The follow-up procedures consisted of a double-blind placebo-controlled food challenge (DBPCFC) with CM t = 0, t = 1 (8 months), t = 2 (16 months), and t = 3 (24 months). At t = 1, eight (73%) of 11 children in the TG had a negative DBPCFC, versus four out of seven (57%) in the CG (BayesFactor = 0.61). At t = 3, nine of the 11 (82%) children in the TG and five of seven (71%) in the CG were tolerant (BayesFactor = 0.51). SIgE for CM reduced from a mean of 3.41 kU/L (SD = 5.63) in the TG to 1.24 kU/L (SD = 2.08) at the end of intervention, respectively a mean of 2.58 (SD = 3.32) in the CG to 0.63 kU/L (SD = 1.06). Product-related AEs were not reported. CM was successfully introduced in all children with negative DBPCFC. We found a standardised, well-defined heated CM protein powder that is safe for daily OIT treatment in a selected group of children with CMA. However, the benefits of inducing tolerance were not observed.


Subject(s)
Milk Hypersensitivity , Milk , Female , Animals , Cattle , Follow-Up Studies , Immunoglobulin E , Allergens , Milk Hypersensitivity/diagnosis , Milk Proteins , Immune Tolerance
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674626

ABSTRACT

(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.


Subject(s)
Antioxidants , Intestinal Mucosa , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Intestinal Mucosa/metabolism , Caco-2 Cells , Amino Acids/pharmacology , Amino Acids/metabolism , HT29 Cells , Coculture Techniques , Tight Junctions/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Resveratrol/pharmacology , Tight Junction Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Arginine/metabolism , Fatty Acids, Unsaturated/metabolism , Permeability
7.
Food Chem ; 402: 134261, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36137390

ABSTRACT

The objective of this research was to analyse the effects of heating on digestion of skimmed goat milk proteins. Most previous goat milk digestion studies evaluated the digestion only based on the supernatant. In this study, digestion of skimmed goat milk was studied in both supernatant and gastric clot. The results indicated that, compared to mild temperature heated samples (≤75 °C), samples heated at ≥80 °C showed more extensive gastric clot formation with a higher protein digestion rate, but also resulted in a larger amount of undigested whey proteins due to its severe aggregation. For the peptidome, ß-casein was the major source of bioactive peptides. The samples heated at 65 °C showed higher bioactive peptide abundances, whereas at temperatures higher than 75 °C, it was reduced due to cleavage into smaller peptides. Overall, this study showed that different heating temperatures induced different whey protein denaturation degrees, which affected their digestion in skimmed goat milk..


Subject(s)
Caseins , Goats , Animals , Goats/metabolism , Whey Proteins/metabolism , Caseins/metabolism , Heating , Proteolysis , Peptides/metabolism , Digestion , Milk Proteins/analysis
8.
Nutrients ; 14(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631278

ABSTRACT

Food-induced anaphylaxis is an immediate adverse reaction, primarily triggered by the cross-linking of allergen-specific immunoglobulin (Ig) E bound to the high-affinity IgE receptor (FcεRI) on mast cells (MCs) after re-exposure to the same food allergen [...].


Subject(s)
Anaphylaxis , Food Hypersensitivity , Allergens , Anaphylaxis/etiology , Humans , Immunoglobulin E , Mast Cells , Receptors, IgE
9.
Nutrients ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35276990

ABSTRACT

The introduction of baked milk products in cow's milk (CM) allergic children has previously been shown to accelerate induction tolerance in a selected group of children. However, there is no standardized baked milk product on the market. Recently, a new standardized, heated and glycated cow's milk protein (HP) product was developed. The aim of this study was to measure safety and tolerability of a new, well characterized heated CM protein (HP) product in cow's milk allergic (CMA) children between the age of 3 and 36 months. The children were recruited from seven clinics throughout The Netherlands. The HP product was introduced in six incremental doses under clinical supervision. Symptoms were registered after introduction of the HP product. Several questionnaires were filled out by parents of the children. Skin prick tests were performed with CM and HP product, sIgE to CM and α-lactalbumin (Bos d4), ß-lactoglobulin (Bos d5), serum albumin (Bos d 6), lactoferrin (Bos d7) and casein (Bos d8). Whereas 72% percent (18 out of 25) of the children tolerated the HP product, seven children experienced adverse events. Risk factors for intolerance to the HP product were higher skin prick test (SPT) histamine equivalent index (HEP) results with CM and the HP product, higher specific IgE levels against Bos d4 and Bos d8 levels and Bos d5 levels. In conclusion, the HP product was tolerated by 72% of the CM allergic children. Outcomes of SPT with CM and the HP product, as well as values of sIgE against caseins, α-lactalbumin, and ß-lactoglobulin may predict the tolerability of the HP product. Larger studies are needed to confirm these conclusions.


Subject(s)
Milk Hypersensitivity , Milk , Allergens , Animals , Caseins , Cattle , Female , Immunoglobulin E , Milk/metabolism , Milk Hypersensitivity/diagnosis
10.
Nutrients ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35057544

ABSTRACT

Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called "dicarbonyl stress", resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.


Subject(s)
Glycation End Products, Advanced/metabolism , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases/metabolism , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Blood-Brain Barrier/metabolism , Cell Line , Diet/methods , Humans , Mice , Microglia/metabolism , Monocytes/metabolism , Multiple Sclerosis/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Rats , Receptor for Advanced Glycation End Products/metabolism
11.
Food Chem ; 375: 131878, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34952386

ABSTRACT

Soy protein is the main protein source for plant-based infant formula, whereas pea protein is considered as a potential alternative plant protein source. This study assessed the structural changes of soy and pea proteins after heating between 65 °C and 100 °C, and its effects on the in vitro digestibility in the context of infant digestion. We found that with increased heating intensity, both soy and pea proteins unfolded, manifested as the increased surface hydrophobicity, thereby potentially improving the accessibility to digestive enzymes. Their final in vitro digestibility increased from âˆ¼ 30% of non-treated samples to âˆ¼ 60% of 100 °C-heated samples for soy protein, and from âˆ¼ 52% to âˆ¼ 65% for pea protein. Surface hydrophobicity was strongly positively correlated to the overall digestibility. Therefore, the heating temperatures that enabled protein unfolding promoted the digestibility of soy and pea proteins under infant digestion conditions.


Subject(s)
Pea Proteins , Plant Proteins , Digestion , Hot Temperature , Humans , Infant , Soybean Proteins
12.
Food Funct ; 12(19): 9248-9260, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606540

ABSTRACT

Pathogenesis of C. difficile in the intestine is associated with the secretion of toxins which can damage the intestinal epithelial layer and result in diseases such as diarrhoea. Treatment for C. difficile infections consists of antibiotics which, however, have non-specific microbiocidal effects and may cause intestinal dysbiosis which results in subsequent health issues. Therefore, alternative treatments to C. difficile infections are required. We investigated whether different black soldier fly- and mealworm-derived fractions, after applying the INFOGEST digestion protocol, could counteract C. difficile toxin A-mediated barrier damage of small intestinal Caco-2 cells. Treatment and pre-treatment with insect-derived fractions significantly (p < 0.05) mitigated the decrease of the transepithelial electrical resistance (TEER) of Caco-2 cells induced by C. difficile toxin A. In relation to these effects, RNA sequencing data showed an increased transcription of cell junctional and proliferation protein genes in Caco-2 cells. Furthermore, the transcription of genes regulating immune signalling was also increased. To identify whether this resulted in immune activation we used a Caco-2/THP-1 co-culture model where the cells were only separated by a permeable membrane. However, the insect-derived fractions did not change the basolateral secreted IL-8 levels in this model. To conclude, our findings suggest that black soldier fly- and mealworm-derived fractions can attenuate C. difficile induced intestinal barrier disruption and they might be promising tools to reduce the symptoms of C. difficile infections.


Subject(s)
Bacterial Toxins/toxicity , Cell Proliferation/genetics , Enterotoxins/toxicity , Insecta , Intercellular Junctions/genetics , Intestinal Mucosa/physiology , Intestine, Small/cytology , Transcription, Genetic , Animals , Caco-2 Cells , Clostridioides difficile , Coculture Techniques , Coleoptera , Diptera , Epithelial Cells/physiology , Humans , Immunity/genetics , Immunomodulation , Insect Proteins/pharmacology , Intestinal Mucosa/cytology , Intestine, Small/physiology , Macrophages , RNA-Seq , THP-1 Cells
13.
Foods ; 10(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34441613

ABSTRACT

For the determination of the binding of heated cow's milk whey proteins such as ß-lactoglobulin to the receptors expressed on immune cells, inhibition ELISA with the soluble form of the receptor for advanced glycation end products (sRAGE) and scavenger receptor class B (CD36) has been successfully used in the past. However, binding to heated and glycated caseins in this read-out system has not been tested. In this study, inhibition ELISA was applied to measure the binding of cow's milk casein alone, as well as all milk proteins together, which underwent differential heat treatment, to sRAGE and CD36, and we compared those results to a dot blot read out. Moreover, binding to sRAGE and CD36 of differentially heated milk protein was measured before and after in vitro digestion. Casein showed binding to sRAGE and CD36, independent from the heat treatment, in ELISA, while the dot blot showed only binding to high-temperature-heated milk protein, indicating that the binding is not related to processing but to the physicochemical characteristics of the casein. This binding decreased after passage of casein through the intestinal phase.

14.
Sci Rep ; 11(1): 13186, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162953

ABSTRACT

Hypoxia and hyperthermia, which can be induced by high environmental temperature or strenuous exercise, are two common stressors that affect intestinal epithelial integrity and lead to multiple clinical symptoms. In this study, we developed an in-vitro intestinal monolayer model using two human colonic epithelial cell lines, Caco-2 and HT-29, co-cultured in Transwell inserts, and investigated the effects of heat treatment and/or hypoxia on the epithelial barrier function. The monolayer with a ratio of 9:1 (Caco-2:HT-29) showed high trans-epithelial electrical resistance (TEER), low Lucifer Yellow permeability and high mucin production. Hyperthermia and/or hypoxia exposure (2 h) triggered heat shock and oxidative stress responses. HSP-70 and HSF-1 protein levels were up-regulated by hyperthermia, which were further enhanced when hyperthermia was combined with hypoxia. Increased HIF-1α protein expression and Nrf2 nuclear translocation was only caused by hypoxia. Hyperthermia and/or hypoxia exposure disrupted the established monolayer by increasing paracellular permeability, decreasing ZO-1, claudin-3 and occludin protein/mRNA expression, while enhancing E-cadherin protein expression. Tight junction protein distribution in the monolayer was also modulated by the hyperthermia and/or hypoxia exposure. In addition, transcription levels of mucin genes, MUC-2 and MUC-5AC, were increased after 2 h of hyperthermia and/or hypoxia exposure. In conclusion, this Caco-2/HT-29 cell model is valid and effective for studying detrimental effects of hyperthermia and/or hypoxia on intestinal barrier function and related heat shock and oxidative stress pathways and can be used to investigate possible interventions to reverse hyperthermia and/or hypoxia-induced intestinal epithelial injury.


Subject(s)
Cell Hypoxia , Enterocytes/physiology , Goblet Cells/physiology , Heat-Shock Response , Adenocarcinoma/pathology , Adenocarcinoma, Mucinous/pathology , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , Coculture Techniques , Colonic Neoplasms/pathology , Coloring Agents , Electric Impedance , Gene Expression Regulation, Neoplastic , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Humans , Intercellular Junctions , Isoquinolines , Mucins/biosynthesis , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Oxidative Stress , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Transcription, Genetic
15.
Mol Nutr Food Res ; 65(8): e2000834, 2021 04.
Article in English | MEDLINE | ID: mdl-33559978

ABSTRACT

SCOPE: ß-lactoglobulin (BLG) is a major cow milk allergen encountered by the immune system of infants fed with milk-based formulas. To determine the effect of processing on immunogenicity of BLG, this article characterized how heated and glycated BLG are recognized and internalized by APCs. Also, the effect of heat-induced structural changes as well as gastrointestinal digestion on immunogenicity of BLG is evaluated. METHODS AND RESULTS: The binding and uptake of BLG from raw cow milk and heated either alone (BLG-H) or with lactose/glucose (BLG-Lac and BLG-Glu) to the receptors present on APCs are analyzed by ELISA and cell-binding assays. Heated and glycated BLG is internalized via galectin-3 (Gal-3)and scavenger receptors (CD36 and SR-AI) while binding to the receptor for advanced glycation end products (R AGE) does not cause internalization. Receptor affinity of BLG is dependent on increased hydrophobicity, ß-sheet exposure and aggregation. Digested glycated BLG maintained binding to sRAGE and Gal-3 but not to CD36 and SR-AI, and is detected on the surface of APCs. This suggests a mechanism via which digested glycated BLG may trigger innate (via RAGE) and adaptive immunity (via Gal-3). CONCLUSIONS: This study defines structural characteristics of heated and glycated BLG determining its interaction with APCs via specific receptors thus revealing enhanced immunogenicity of glycated versus heated BLG.


Subject(s)
Antigen-Presenting Cells/metabolism , Lactoglobulins/immunology , Lactoglobulins/metabolism , Animals , Antigens, Neoplasm/metabolism , Blood Proteins/metabolism , CD36 Antigens/metabolism , Digestion , Endocytosis/physiology , Food Handling , Galectins/metabolism , Humans , Infant , Lactoglobulins/chemistry , Lactoglobulins/pharmacokinetics , Macrophages/metabolism , Milk/chemistry , Milk Hypersensitivity/immunology , Mitogen-Activated Protein Kinases/metabolism , Scavenger Receptors, Class A/metabolism
16.
Cancer Immunol Immunother ; 70(2): 547-561, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32860527

ABSTRACT

Anti-cancer T-cell responses are often halted due to the immune-suppressive micro-environment, in part related to tumor-associated macrophages. In the current study, we assessed indigestible ß-glucans (oatßG, curdlan, grifolan, schizophyllan, lentinan, yeast whole glucan particles (yWGP), zymosan and two additional yeast-derived ß-glucans a and b) for their physicochemical properties as well as their effects on the plasticity of human monocyte-derived macrophages that were polarized with IL-4 to immune-suppressive macrophages. Beta-glucans were LPS/LTA free, and tested for solubility, molecular masses, protein and monosaccharide contents. Curdlan, yeast-b and zymosan re-polarized M(IL-4) macrophages towards an M1-like phenotype, in particular showing enhanced gene expression of CCR7, ICAM1 and CD80, and secretion of TNF-α and IL-6. Notably, differential gene expression, pathway analysis as well as protein expressions demonstrated that M(IL-4) macrophages treated with curdlan, yeast-b or zymosan demonstrated enhanced production of chemo-attractants, such as CCL3, CCL4, and CXCL8, which contribute to recruitment of monocytes and neutrophils. The secretion of chemo-attractants was confirmed when using patient-derived melanoma-infiltrating immune cells. Taken together, the bacterial-derived curdlan as well as the yeast-derived ß-glucans yeast-b and zymosan have the unique ability to preferentially skew macrophages towards a chemo-attractant-producing phenotype that may aid in anti-cancer immune responses.


Subject(s)
Chemotactic Factors/therapeutic use , Tumor-Associated Macrophages/metabolism , Zymosan/metabolism , beta-Glucans/metabolism , Chemotactic Factors/pharmacology , Humans
17.
NPJ Sci Food ; 4(1): 22, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33335099

ABSTRACT

Food security is under increased pressure due to the ever-growing world population. To tackle this, alternative protein sources need to be evaluated for nutritional value, which requires information on digesta peptide composition in comparison to established protein sources and coupling to biological parameters. Here, a combined experimental and computational approach is presented, which compared seventeen protein sources with cow's whey protein concentrate (WPC) as the benchmark. In vitro digestion of proteins was followed by proteomics analysis and statistical model-based clustering. Information on digesta peptide composition resulted in 3 cluster groups, primarily driven by the peptide overlap with the benchmark protein WPC. Functional protein data was then incorporated in the computational model after evaluating the effects of eighteen protein digests on intestinal barrier integrity, viability, brush border enzyme activity, and immune parameters using a bioengineered intestine as microphysiological gut system. This resulted in 6 cluster groups. Biological clustering was driven by viability, brush border enzyme activity, and significant differences in immune parameters. Finally, a combination of proteomic and biological efficacy data resulted in 5 clusters groups, driven by a combination of digesta peptide composition and biological effects. The key finding of our holistic approach is that protein source (animal, plant or alternative derived) is not a driving force behind the delivery of bioactive peptides and their biological efficacy.

18.
Nutrients ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333859

ABSTRACT

Immune-globulin E (IgE)-mediated food allergy is characterized by a variety of clinical entities within the gastrointestinal tract, skin and lungs, and systemically as anaphylaxis. The default response to food antigens, which is antigen specific immune tolerance, requires exposure to the antigen and is already initiated during pregnancy. After birth, tolerance is mostly acquired in the gut after oral ingestion of dietary proteins, whilst exposure to these same proteins via the skin, especially when it is inflamed and has a disrupted barrier, can lead to allergic sensitization. The crosstalk between the skin and the gut, which is involved in the induction of food allergy, is still incompletely understood. In this review, we will focus on mechanisms underlying allergic sensitization (to food antigens) via the skin, leading to gastrointestinal inflammation, and the development of IgE-mediated food allergy. Better understanding of these processes will eventually help to develop new preventive and therapeutic strategies in children.


Subject(s)
Allergens/immunology , Desensitization, Immunologic/methods , Food Hypersensitivity/immunology , Gastrointestinal Tract/immunology , Skin/immunology , Cross Reactions/immunology , Food/adverse effects , Humans , Immunoglobulin E/immunology
19.
Front Nutr ; 7: 132, 2020.
Article in English | MEDLINE | ID: mdl-33015115

ABSTRACT

Fungal immunomodulatory proteins (FIPs) are a group of proteins found in fungi, which are extensively studied for their immunomodulatory activity. Currently, more than 38 types of FIPs have been described. Based on their conserved structure and protein identity, FIPs can be classified into five subgroups: Fve-type FIPs (Pfam PF09259), Cerato-type FIPs (Pfam PF07249), PCP-like FIPs, TFP-like FIPs, and unclassified FIPs. Among the five subgroups, Fve-type FIPs are the most studied for their hemagglutinating, immunomodulating, and anti-cancer properties. In general, these small proteins consist of 110-125 amino acids, with a molecular weight of ~13 kDa. The other four subgroups are relatively less studied, but also show a noticeable influence on immune cells. In this review, we summarized the protein modifications, 3-dimensional structures and bioactivities of all types of FIPs. Moreover, structure-function relationship of FIPs has been discussed, including relationship between carbohydrate binding module and hemagglutination, correlation of oligomerization and cytokine induction, relevance of glycosylation and lymphocyte activation. This summary and discussion may help gain comprehensive understanding of FIPs' working mechanisms and scope future studies.

20.
Mol Nutr Food Res ; 64(23): e2000324, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33067879

ABSTRACT

SCOPE: Chitin, the most abundant polysaccharide found in nature after cellulose, is known for its ability to support wound healing and to lower plasma-oxidized low-density lipoprotein (LDL) levels. Studies have also revealed immunomodulatory potential but contradicting results are often impossible to coalesce through usage of chitin of different or unknown physicochemical consistency. In addition, only a limited set of cellular models have been used to test the bioactivity of chitin. METHODS AND RESULTS: Chitin is investigated with well-defined physicochemical consistency for its immunomodulatory potency using THP-1 macrophages, impact on intestinal epithelial barrier using Caco-2 cells, and fermentation by fecal-derived microbiota. Results show that chitin with a degree of acetylation (DA) of ≈83%, regardless of size, does not affect the intestinal epithelial barrier integrity. Large-sized chitin significantly increases acetic acid production by gut microbiota without altering the composition. Exposure of small-sized chitin to THP-1 macrophages lead to significantly increased secretion of IL-1ß, IL-8, IL-10, and CXCL10 in a multi-receptor and clathrin-mediated endocytosis dependent manner. CONCLUSIONS: These findings indicate that small-sized chitin does not harm the intestinal barrier nor affects SCFA secretion and microbiota composition, but does impact immune activity which could be beneficial to subjects in need of immune support or activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...