Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Pathol Oncol Res ; 28: 1610322, 2022.
Article in English | MEDLINE | ID: mdl-35651701

ABSTRACT

Purpose: In HT29 colon cancer cells, a close interplay between self-DNA-induced TLR9 signaling and autophagy response was found, with remarkable effects on cell survival and differentiation. IGF1R activation drives the development and malignant progression of colorectal cancer. IGF1R inhibition displays a controversial effect on autophagy. The interrelated roles of IGF1R inhibition and TLR9/autophagy signaling in HT29 cancer cells have not yet been clarified. In our study, we aimed to investigate the complex interplay of IGF1R inhibition and TLR9/autophagy signaling in HT29 cells. Methods: HT29 cells were incubated with tumor-originated self-DNA with or without inhibitors of IGF1R (picropodophyllin), autophagy (chloroquine), and TLR9 (ODN2088), respectively. Cell proliferation and metabolic activity measurements, direct cell counting, NanoString and Taqman gene expression analyses, immunocytochemistry, WES Simple Western blot, and transmission electron microscopy investigations were performed. Results: The concomitant use of tumor-derived self-DNA and IGF1R inhibitors displays anti-proliferative potential, which can be reversed by parallel TLR9 signaling inhibition. The distinct effects of picropodophyllin, ODN2088, and chloroquine per se or in combination on HT29 cell proliferation and autophagy suggest that either the IGF1R-associated or non-associated autophagy machinery is "Janus-faced" regarding its actions on cell proliferation. Autophagy, induced by different combinations of self-DNA and inhibitors is not sufficient to rescue HT29 cells from death but results in the survival of some CD133-positive stem-like HT29 cells. Conclusion: The creation of new types of combined IGF1R, autophagy, and/or TLR9 signaling inhibitors would play a significant role in the development of more personalized anti-tumor therapies for colorectal cancer.


Subject(s)
Colonic Neoplasms , Toll-Like Receptor 9 , Autophagy , Chloroquine/pharmacology , DNA, Neoplasm , HT29 Cells , Humans , Receptor, IGF Type 1 , Toll-Like Receptor 9/genetics
2.
Front Oncol ; 10: 645, 2020.
Article in English | MEDLINE | ID: mdl-32477937

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.

3.
Pathol Oncol Res ; 26(4): 2209-2223, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32307642

ABSTRACT

Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p < 0.001) compared to normal samples, which was confirmed by real-time PCR and in situ hybridization. LINC00152 promoter hypomethylation detected in colorectal cancer (p < 0.01) was strongly correlated with increased LINC00152 expression (r=-0.90). Silencing of LINC00152 significantly suppressed cell growth, induced apoptosis and decreased cyclin D1 expression (p < 0.05). Whole transcriptome analysis of LINC00152-silenced cells revealed significant down-regulation of oncogenic and metastasis promoting genes (e.g. YES proto-oncogene 1, PORCN porcupine O-acyltransferase), and up-regulation of tumour suppressor genes (e.g. DKK1 dickkopf WNT signalling pathway inhibitor 1, PERP p53 apoptosis effector) (adjusted p < 0.05). Pathway analysis confirmed the LINC00152-related activation of oncogenic molecular pathways including those driven by PI3K/Akt, Ras, WNT, TP53, Notch and ErbB. Our results suggest that promoter hypomethylation related overexpression of LINC00152 can contribute to the pathogenesis of colorectal cancer by facilitating cell progression through the up-regulation of several oncogenic and metastasis promoting pathway elements.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , DNA Methylation , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Aged , Carcinogenesis , Case-Control Studies , Colorectal Neoplasms/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis , Proto-Oncogene Mas , Transcriptome
4.
BMC Cancer ; 19(1): 1059, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694571

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play a fundamental role in colorectal cancer (CRC) development, however, lncRNA expression profiles in CRC and its precancerous stages remain to be explored. We aimed to study whole genomic lncRNA expression patterns in colorectal adenoma-carcinoma transition and to analyze the underlying functional interactions of aberrantly expressed lncRNAs. METHODS: LncRNA expression levels of colonic biopsy samples (20 CRCs, 20 adenomas (Ad), 20 healthy controls (N)) were analyzed with Human Transcriptome Array (HTA) 2.0. Expression of a subset of candidates was verified by qRT-PCR and in situ hybridization (ISH) analyses. Furthermore, in silico validation was performed on an independent HTA 2.0, on HGU133Plus 2.0 array data and on the TCGA COAD dataset. MiRNA targets of lncRNAs were predicted with miRCODE and lncBase v2 algorithms and miRNA expression was analyzed on miRNA3.0 Array data. MiRNA-mRNA target prediction was performed using miRWALK and c-Met protein levels were analyzed by immunohistochemistry. Comprehensive lncRNA-mRNA-miRNA co-expression pattern analysis was also performed. RESULTS: Based on our HTA results, a subset of literature-based CRC-associated lncRNAs showed remarkable expression changes already in precancerous colonic lesions. In both Ad vs. normal and CRC vs. normal comparisons 16 lncRNAs, including downregulated LINC02023, MEG8, AC092834.1, and upregulated CCAT1, CASC19 were identified showing differential expression during early carcinogenesis that persisted until CRC formation (FDR-adjusted p < 0.05). The intersection of CRC vs. N and CRC vs. Ad comparisons defines lncRNAs characteristic of malignancy in colonic tumors, where significant downregulation of LINC01752 and overexpression of UCA1 and PCAT1 were found. Two candidates with the greatest increase in expression in the adenoma-carcinoma transition were further confirmed by qRT-PCR (UCA1, CCAT1) and by ISH (UCA1). In line with aberrant expression of certain lncRNAs in tumors, the expression of miRNA and mRNA targets showed systematic alterations. For example, UCA1 upregulation in CRC samples occurred in parallel with hsa-miR-1 downregulation, accompanied by c-Met target mRNA overexpression (p < 0.05). CONCLUSION: The defined lncRNA sets may have a regulatory role in the colorectal adenoma-carcinoma transition. A subset of CRC-associated lncRNAs showed significantly differential expression in precancerous samples, raising the possibility of developing adenoma-specific markers for early detection of colonic lesions.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Adenoma/pathology , Adult , Aged , Carcinoma/pathology , Colorectal Neoplasms/pathology , Gene Ontology , Gene Regulatory Networks , Humans , Middle Aged , Models, Genetic , Young Adult
5.
Pathol Oncol Res ; 25(1): 97-105, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28980150

ABSTRACT

MicroRNAs (miRNAs) have been found to play a critical role in colorectal adenoma-carcinoma sequence. MiRNA-specific high-throughput arrays became available to detect promising miRNA expression alterations even in biological fluids, such as plasma samples, where miRNAs are stable. The purpose of this study was to identify circulating miRNAs showing altered expression between normal colonic (N), tubular adenoma (ADT), tubulovillous adenoma (ADTV) and colorectal cancer (CRC) matched plasma and tissue samples. Sixteen peripheral plasma and matched tissue biopsy samples (N n = 4; ADT n = 4; ADTV n = 4; CRC n = 4) were selected, and total RNA including miRNA fraction was isolated. MiRNAs from plasma samples were extracted using QIAamp Circulating Nucleic Acid Kit (Qiagen). Matched tissue-plasma miRNA microarray experiments were conducted by GeneChip® miRNA 3.0 Array (Affymetrix). RT-qPCR (microRNA Ready-to-use PCR Human Panel I + II; Exiqon) was used for validation. Characteristic miRNA expression alterations were observed in comparison of AD and CRC groups (miR-149*, miR-3196, miR-4687) in plasma samples. In the N vs. CRC comparison, significant overexpression of miR-612, miR-1296, miR-933, miR-937 and miR-1207 was detected by RT-PCR (p < 0.05). Similar expression pattern of these miRNAs were observed using microarray in tissue pairs, as well. Although miRNAs were also found in circulatory system in a lower concentration compared to tissues, expression patterns slightly overlapped between tissue and plasma samples. Detected circulating miRNA alterations may originate not only from the primer tumor but from other cell types including immune cells.


Subject(s)
Adenoma/genetics , Biomarkers, Tumor/genetics , Circulating MicroRNA/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Adenoma/blood , Adenoma/pathology , Biomarkers, Tumor/blood , Case-Control Studies , Circulating MicroRNA/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Disease Progression , Follow-Up Studies , Gene Expression Profiling , Humans , Prognosis
6.
Pathol Oncol Res ; 25(3): 915-923, 2019 Jul.
Article in English | MEDLINE | ID: mdl-29374860

ABSTRACT

During colorectal cancer (CRC) development tumor-derived cell-free DNA (cfDNA) can be released into the bloodstream. Many different cfDNA isolation methods and specific blood collection tubes preventing the release of genomic DNA and stabilizing cfDNA with preservative reagents became available. These factors may affect greatly on the further liquid biopsy analyses. Our aim was to test different blood collection tubes and cfDNA isolation methods to determine whether these factors influence the cfDNA amount and the promoter methylation of four previously described hypermethylated biomarkers. Three manual isolation methods (High Pure Viral Nucleic Acid Large Volume Kit; Epi proColon 2.0 Kit; Quick-cfDNA™ Serum & Plasma Kit) and automated sample preparation systems (InviGenius and InviGenius PLUS) were examined. Furthermore, K3EDTA Vacuette tubes and Streck Cell-Free DNA BCT® tubes were compared. After cfDNA isolation and bisulfite conversion of samples, the methylation level of SFRP1, SFRP2, SDC2, and PRIMA1 were defined with MethyLight assays. We have ascertained that there are differences between the cfDNA amounts depending on the isolation methods. Higher cfDNA yield was observed using InviGenius system than column-based manual isolation method; however, InviGenius PLUS has produced lower cfDNA amounts. No remarkable variance could be found between K3EDTA and Streck tubes; slightly higher cfDNA quantity was detected in 60% of plasma samples using Streck tubes. In point of methylation level and frequency, manual column-based isolation produced more consistent results. Automated cfDNA extraction systems are easy-to-use and high-throughput; however, further improvements in the isolation protocols might lead to the increase of the sensitivity of further methylation analysis.


Subject(s)
Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA, Neoplasm/genetics , Biomarkers, Tumor/genetics , DNA Methylation/genetics , Humans , Liquid Biopsy/methods , Membrane Proteins/genetics , Promoter Regions, Genetic/genetics , Sensitivity and Specificity , Specimen Handling/methods , Syndecan-2/genetics
7.
BMC Cancer ; 18(1): 695, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29945573

ABSTRACT

BACKGROUND: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS: DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation , Exons , Mutation , Promoter Regions, Genetic , Adenoma/genetics , CpG Islands , Humans , Long Interspersed Nucleotide Elements , Signal Transduction , Tumor Suppressor Protein p53/physiology
8.
Epigenetics ; 12(9): 751-763, 2017 09.
Article in English | MEDLINE | ID: mdl-28753106

ABSTRACT

Aberrant methylation is one of the most frequent epigenetic alterations that can contribute to tumor formation. Cell-free DNA can originate from tumor tissue; therefore, the evaluation of methylation markers in cell-free DNA can be a promising method for cancer screening. Our aim was to develop a panel of biomarkers with altered methylation along the colorectal adenoma-carcinoma sequence in both colonic tissue and plasma. Methylation of selected CpG sites in healthy colonic (n = 15), adenoma (n = 15), and colorectal cancer (n = 15) tissues was analyzed by pyrosequencing. MethyLight PCR was applied to study the DNA methylation of SFRP1, SFRP2, SDC2, and PRIMA1 gene promoters in 121 plasma and 32 biopsy samples. The effect of altered promoter methylation on protein expression was examined by immunohistochemistry. Significantly higher (P < 0.05) DNA methylation levels were detected in the promoter regions of all 4 markers, both in CRC and adenoma tissues compared with healthy controls. Methylation of SFRP1, SFRP2, SDC2, and PRIMA1 promoter sequences was observed in 85.1%, 72.3%, 89.4%, and 80.9% of plasma samples from patients with CRC and 89.2%, 83.8%, 81.1% and 70.3% from adenoma patients, respectively. When applied as a panel, CRC patients could be distinguished from controls with 91.5% sensitivity and 97.3% specificity [area under the curve (AUC) = 0.978], while adenoma samples could be differentiated with 89.2% sensitivity and 86.5% specificity (AUC = 0.937). Immunohistochemical analysis indicated decreasing protein levels of all 4 markers along the colorectal adenoma-carcinoma sequence. Our findings suggest that this methylation biomarker panel allows non-invasive detection of colorectal adenoma and cancer from plasma samples.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Syndecan-2/genetics , Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/chemistry , Membrane Proteins/chemistry , Nerve Tissue Proteins/chemistry , Promoter Regions, Genetic , Syndecan-2/chemistry
9.
J Cancer ; 8(2): 162-173, 2017.
Article in English | MEDLINE | ID: mdl-28243320

ABSTRACT

Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations (FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation (APC). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

10.
Clin Epigenetics ; 9: 22, 2017.
Article in English | MEDLINE | ID: mdl-28289479

ABSTRACT

BACKGROUND: MiRNA expression markers are well characterized in colorectal cancer (CRC), but less is known about miRNA expression profiles in colorectal adenomas. Genome-wide miRNA and mRNA expression analyses were conducted through the colorectal adenoma dysplasia sequence. Furthermore, analysis of the expression levels of miRNAs in matched plasma samples was performed, focusing on biomarker candidates; miRNA and mRNA expression analyses were performed on colorectal biopsies and plasma samples (20 normals; 11 tubular and 9 tubulovillous adenomas; 20 colorectal carcinomas) by miRNA 3.0 and Human Transcriptome Array (Affymetrix) and validated by RT-qPCR. Microarray data were analyzed using Expression Console and mRNA targets were predicted using miRWALK 2.0. RESULTS: Based on microarray analysis, 447 miRNAs were expressed in tissue and 320 in plasma. Twelve were upregulated (miR-31, 8-fold p < 0.001) and 11 were downregulated (miR-10b 3-fold p < 0.001) in neoplastic lesions compared to normal group. Eleven miRNAs showed altered expression between adenoma subtypes (miR-183 2.8-fold change, p < 0.007). Expression level of 24 miRNAs differed between adenoma and CRC groups (including miR-196a, 3.5-fold). Three miRNAs (miR-31, miR-4506, miR-452*) were differentially expressed in adenoma compared to normal both in tissue and plasma samples. miRNA expression data were confirmed by RT-PCR both in plasma and matched tissue samples. CONCLUSIONS: MiRNAs showed characteristic expression changes during CRC development in tissue. miRNAs were also presented in plasma and positively correlated with matched tissue expression levels. The identified miRNA expression changes could be verified RT-PCR methods facilitating routine application.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , MicroRNAs/genetics , Adenoma/blood , Colorectal Neoplasms/blood , Computer Simulation , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
11.
Pathol Oncol Res ; 23(3): 699-706, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28035516

ABSTRACT

To determine the level of cell-free DNA (cfDNA), Septin 9 (SEPT9) and tumor markers (CEA, AFP, CA19-9, TPA, CA72-4). Plasma samples were collected four times a day (06:00, 12:00, 18:00, 24:00) from 9 patients with CRC (5 stage I-II, 4 stage III-IV), from one with colorectal adenoma and from one healthy control. CfDNA was isolated, quantified and bisulfite-converted. CfDNA and methylated SEPT9 were determined by RT-PCR. Plasma levels of conventional tumor markers were also measured. The lowest cfDNA concentrations were observed at 24:00 and 18:00 in stage I-III patients. In stage IV samples low cfDNA level (mean 48.2 ng/ml) were observed at several time points (6:00, 12:00, 18:00). The highest cfDNA levels were measured at 6:00 and 12:00 in CRC I-III stages and at 24:00 in stage IV samples (78.65 ng/ml). Higher in-day differences were found in stage II (43-48%) than in stage I samples (22%). Interestingly, the highest SEPT9 methylation level was found at 24:00 in most CRC cases, in contrast to the cfDNA levels. At 24:00, all cancer and adenoma cases were positive for SEPT9 methylation. At other time points (6:00, 12:00, 18:00) only 77.7% of CRC samples showed SEPT9 positivity. Stage I samples were SEPT9 positive only at 24:00. CEA and CA19-9 levels displayed correlation with the amount of cfDNA in case of late stage cases. Daytime activity can influence SEPT9 positivity in cases with low concentration of cfDNA. Thus, it may improve screening sensitivity by collecting samples earlier in the morning.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Circadian Rhythm/genetics , Colorectal Neoplasms/genetics , DNA Methylation/genetics , Adenoma/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Septins/genetics
12.
Epigenetics ; 11(8): 588-602, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27245242

ABSTRACT

The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, ß-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Wnt Signaling Pathway , Adenoma/metabolism , Adenoma/pathology , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Genetic Loci , Genome, Human , Humans , Male , Middle Aged , Promoter Regions, Genetic
13.
World J Gastroenterol ; 22(47): 10325-10340, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-28058013

ABSTRACT

AIM: To analyze colorectal carcinogenesis and age-related DNA methylation alterations of gene sequences associated with epigenetic clock CpG sites. METHODS: In silico DNA methylation analysis of 353 epigenetic clock CpG sites published by Steve Horvath was performed using methylation array data for a set of 123 colonic tissue samples [64 colorectal cancer (CRC), 42 adenoma, 17 normal; GEO accession number: GSE48684]. Among the differentially methylated age-related genes, secreted frizzled related protein 1 (SFRP1) promoter methylation was further investigated in colonic tissue from 8 healthy adults, 19 normal children, 20 adenoma and 8 CRC patients using bisulfite-specific PCR followed by methylation-specific high resolution melting (MS-HRM) analysis. mRNA expression of age-related "epigenetic clock" genes was studied using Affymetrix HGU133 Plus2.0 whole transcriptome data of 153 colonic biopsy samples (49 healthy adult, 49 adenoma, 49 CRC, 6 healthy children) (GEO accession numbers: GSE37364, GSE10714, GSE4183, GSE37267). Whole promoter methylation analysis of genes showing inverse DNA methylation-gene expression data was performed on 30 colonic samples using methyl capture sequencing. RESULTS: Fifty-seven age-related CpG sites including hypermethylated PPP1R16B, SFRP1, SYNE1 and hypomethylated MGP, PIPOX were differentially methylated between CRC and normal tissues (P < 0.05, Δß ≥ 10%). In the adenoma vs normal comparison, 70 CpG sites differed significantly, including hypermethylated DKK3, SDC2, SFRP1, SYNE1 and hypomethylated CEMIP, SPATA18 (P < 0.05, Δß ≥ 10%). In MS-HRM analysis, the SFRP1 promoter region was significantly hypermethylated in CRC (55.0% ± 8.4 %) and adenoma tissue samples (49.9% ± 18.1%) compared to normal adult (5.2% ± 2.7%) and young (2.2% ± 0.7%) colonic tissue (P < 0.0001). DNA methylation of SFRP1 promoter was slightly, but significantly increased in healthy adults compared to normal young samples (P < 0.02). This correlated with significantly increased SFRP1 mRNA levels in children compared to normal adult samples (P < 0.05). In CRC tissue the mRNA expression of 117 age-related genes were changed, while in adenoma samples 102 genes showed differential expression compared with normal colonic tissue (P < 0.05, logFC > 0.5). The change of expression for several genes including SYNE1, CLEC3B, LTBP3 and SFRP1, followed the same pattern in aging and carcinogenesis, though not for all genes (e.g., MGP). CONCLUSION: Several age-related DNA methylation alterations can be observed during CRC development and progression affecting the mRNA expression of certain CRC- and adenoma-related key control genes.


Subject(s)
Adenoma/genetics , Aging/genetics , Biomarkers, Tumor/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Adenoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Carcinoma/pathology , Case-Control Studies , Child , Child, Preschool , Colorectal Neoplasms/pathology , CpG Islands , Female , Gene Expression Profiling/methods , Humans , Infant , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Middle Aged , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Promoter Regions, Genetic
14.
Pathol Oncol Res ; 22(3): 505-13, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26678076

ABSTRACT

MiRNA remain stable for detection and PCR-based amplification in FFPE tissue samples. Several miRNA extraction kits are available, however miRNA fraction, as part of total RNA can be isolated using total RNA purification methods, as well. Our primary aim was to compare four different miRNA and total RNA isolation methods from FFPE tissues. Further purposes were to evaluate quantitatively and qualitatively the yield of the isolated miRNA. MiRNAs were isolated from normal colorectal cancer FFPE specimens from the same patients. Two miRNA isolation kits (High Pure miRNA Isolation Kit, miRCURY™ RNA Isolation Kit) and two total RNA isolation kits were compared (High Pure RNA Paraffin Kit, MagNA Pure 96 Cellular RNA LV Kit). Quantity and quality were determined, expression analysis was performed by real-time PCR using qPCR Human Panel I + II (Exiqon) method detecting 742 human miRNAs in parallel. The yield of total RNA was found to be higher than miRNA purification protocols (in CRC: Ex: 0203 ± 0021 µg; HPm: 1,45 ± 0,8 µg; HPp: 21,36 ± 4,98 µg; MP: 8,6 ± 5,1 µg). MiRNAs were detected in lower relative quantity of total RNA compared to the miRNA kits. Higher number of miRNAs could be detected by the miRNA isolation kits in comparison to the total RNA isolation methods. (Ex: 497 ± 16; HPm: 542 ± 11; HPp: 332 ± 36; MP: 295 ± 74). Colon specific miRNAs (miR-21-5p;-34-5p) give satisfying results by miRNA isolation kits. Although miRNA can be detected also after total RNA isolation methods, for reliable and reproducible miRNA expression profiling the use of miRNA isolation kits are more suitable.


Subject(s)
MicroRNAs/isolation & purification , RNA/isolation & purification , Reagent Kits, Diagnostic , Aged , Colon , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Humans , Paraffin Embedding/methods
15.
BMC Cancer ; 15: 736, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26482433

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence. METHODS: Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10-10 macrodissected and 5-5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed. RESULTS: A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were found to be hypermethylated in human CRC tissue samples. Decreasing protein levels of SFRP1 was also observed along the adenoma-carcinoma sequence. CONCLUSION: Hypermethylation of the selected markers (MAL, PRIMA1, PTGDR and SFRP1) can result in reduced gene expression and may contribute to the formation of colorectal cancer.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Adenoma/metabolism , Adenoma/pathology , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Methylation , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/biosynthesis , Membrane Proteins/biosynthesis , Myelin and Lymphocyte-Associated Proteolipid Proteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA, Messenger/genetics , Receptors, Immunologic/biosynthesis , Receptors, Prostaglandin/biosynthesis
16.
PLoS One ; 10(8): e0133836, 2015.
Article in English | MEDLINE | ID: mdl-26291085

ABSTRACT

Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation/genetics , Transcriptome/genetics , Adolescent , Cell Line, Tumor , Colitis, Ulcerative/genetics , Gene Expression Regulation, Neoplastic/genetics , HT29 Cells , Humans , Mutation/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics
17.
PLoS One ; 10(7): e0131699, 2015.
Article in English | MEDLINE | ID: mdl-26133168

ABSTRACT

BACKGROUND: Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions. AIMS: To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts. MATERIALS AND METHODS: DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-α fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin), DNA methyltransferase 3a (DNMT3a) and NFκB (for treated HDFα cells). RESULTS: Administration of tumor derived DNA on HT29 cells resulted in significant (p<0.05) mRNA level alteration in 118 genes (logFc≥1, p≤0.05), including overexpression of metallothionein genes (i.e. MT1H, MT1X, MT1P2, MT2A), metastasis-associated genes (i.e. TACSTD2, MACC1, MALAT1), tumor biomarker (CEACAM5), metabolic genes (i.e. INSIG1, LIPG), messenger molecule genes (i.e. DAPP, CREB3L2). Increased protein levels of CK20, E-cadherin, and DNMT3a was observed after tumor DNA treatment in HT-29 cells. Healthy DNA treatment affected mRNA expression of 613 genes (logFc≥1, p≤0.05), including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFκB, IL8, IL-1ß), STING pathway (ADAR, IRF7, CXCL10, CASP1) and the FGF2 gene. CONCLUSIONS: DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling pathway in normal fibroblasts.


Subject(s)
DNA/genetics , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Neoplasm Metastasis/genetics , Signal Transduction/genetics , DNA Methyltransferase 3A , Epithelial Cells/metabolism , HT29 Cells , Humans
18.
Diagn Pathol ; 10: 126, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26208990

ABSTRACT

BACKGROUND: A recently published transcript set is suitable for gene expression-based discrimination of normal colonic and colorectal cancer (CRC) biopsy samples. Our aim was to test the discriminatory power of the CRC-specific transcript set on independent biopsies and on formalin-fixed, paraffin-embedded (FFPE) tissue samples. METHODS: Total RNA isolations were performed with the automated MagNA Pure 96 Cellular RNA Large Volume Kit (Roche) from fresh frozen biopsies stored in RNALater (CRC (n = 15) and healthy colonic (n = 15)), furthermore from FFPE specimens including CRC (n = 15) and normal adjacent tissue (NAT) (n = 15) specimens next to the tumor. After quality and quantity measurements, gene expression analysis of a colorectal cancer-specific marker set with 11 genes (CA7, COL12A1, CXCL1, CXCL2, CHI3L1, GREM1, IL1B, IL1RN, IL8, MMP3, SLC5A7) was performed with array real-time PCR using Transcriptor First Strand cDNA Synthesis Kit (Roche) and RealTime ready assays on LightCycler480 System (Roche). In situ hybridization for two selected transcripts (CA7, CXCL1) was performed on NAT (n = 3), adenoma (n = 3) and CRC (n = 3) FFPE samples. RESULTS: Although analytical parameters of automatically isolated RNA samples showed differences between fresh frozen biopsy and FFPE samples, both quantity and the quality enabled their application in gene expression analyses. CRC and normal fresh frozen biopsy samples could be distinguished with 93.3% sensitivity and 86.7% specificity and FFPE samples with 96.7 and 70.0%, respectively. In situ hybridization could confirm the upregulation of CXCL1 and downregulation of CA7 in colorectal adenomas and tumors compared to healthy controls. CONCLUSION: According to our results, gene expression analysis of the analyzed colorectal cancer-specific marker set can also be performed from FFPE tissue material. With the addition of an automated workflow, this marker set may enhance the objective classification of colorectal neoplasias in the routine procedure in the future.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/genetics , Gene Expression Profiling/methods , Area Under Curve , Biomarkers, Tumor/genetics , Formaldehyde , Humans , In Situ Hybridization , Paraffin Embedding , ROC Curve , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Tissue Fixation
19.
Pathol Oncol Res ; 21(4): 1149-56, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25991403

ABSTRACT

We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from "recent", collected within 6 months, and "archived", collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18 µg DNA; Q: 3.00 ± 4.04 µg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91 µg DNA; Q: 11.51 ± 7.50 µg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.


Subject(s)
Colorectal Neoplasms/genetics , DNA Methylation/genetics , DNA/genetics , Formaldehyde/chemistry , Paraffin/chemistry , Sulfites/chemistry , Humans , Paraffin Embedding/methods , Reproducibility of Results , Sequence Analysis, DNA/methods
20.
J Lab Autom ; 20(6): 642-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25576093

ABSTRACT

Automated DNA isolation can decrease hands-on time in routine pathology. Our aim was to apply automated DNA isolation and perform DNA methylation analyses. DNA isolation was performed manually from fresh frozen (CRC = 10, normal = 10) specimens and colonic biopsies (CRC = 10, healthy = 10) with QIAamp DNA Mini Kit and from FFPE blocks (CRC = 10, normal = 10) with QIAamp DNA FFPET Kit. Automated DNA isolation was performed with MagNA Pure DNA and Viral NA SV kit on MagNA Pure 96 system. DNA methylation of MAL, SFRP1, and SFRP2 were analyzed with methylation-specific high-resolution melting analysis. Yield of automatically isolated samples was equal in fresh frozens and significantly lower compared to manually isolated biopsy and FFPE samples. OD260/280 of fresh frozen and biopsy samples were similar after both isolations, automated isolation resulted in lower purity in FFPE samples. Both protocols resulted in similar OD260/230 from fresh frozens, automated isolation method was superior in biopsies and manual protocol in FFPE samples. DNA methylation of biopsies, fresh frozen samples were highly similar after both methods, results of automatically and manually isolated FFPE samples were different. Automated DNA isolation from fresh frozen samples can be suitable for high-throughput laboratories.


Subject(s)
Automation, Laboratory/methods , Colorectal Neoplasms/diagnosis , DNA/isolation & purification , Specimen Handling/methods , Biopsy , Colorectal Neoplasms/pathology , DNA/chemistry , DNA Methylation , Humans , Pathology, Surgical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...