Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(7): 4820-4834, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38601782

ABSTRACT

Adding photocatalytically active TiO2 nanoparticles (NPs) to polymeric paints is a feasible route toward self-cleaning coatings. While paint modification by TiO2-NPs may improve photoactivity, it may also cause polymer degradation and release of toxic volatile organic compounds. To counterbalance adverse effects, a synthesis method for nonmetal (P, N, and C)-doped TiO2-NPs is introduced, based purely on waste valorization. PNC-doped TiO2-NP characterization by vibrational and photoelectron spectroscopy, electron microscopy, diffraction, and thermal analysis suggests that TiO2-NPs were modified with phosphate (P=O), imine species (R=N-R), and carbon, which also hindered the anatase/rutile phase transformation, even upon 700 °C calcination. When added to water-based paints, PNC-doped TiO2-NPs achieved 96% removal of surface-adsorbed pollutants under natural sunlight or UV, paralleled by stability of the paint formulation, as confirmed by micro-Fourier transform infrared (FTIR) surface analysis. The origin of the photoinduced self-cleaning properties was rationalized by three-dimensional (3D) and synchronous photoluminescence spectroscopy, indicating that the dopants led to 7.3 times stronger inhibition of photoinduced e-/h+ recombination when compared to a benchmark P25 photocatalyst.

2.
RSC Adv ; 14(7): 4575-4586, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38318608

ABSTRACT

Efficient carbon monoxide oxidation is important to reduce its impacts on both human health and the environment. Following a sustainable synthesis route toward new catalysts, nanosized Co3O4 was synthesized based on extracts of microalgae: Spirulina platensis, Chlorella vulgaris, and Haematococcus pluvialis. Using the metabolites in the extract and applying different calcination temperatures (450, 650, 800 °C) led to Co3O4 catalysts with distinctly different properties. The obtained Co3O4 nanomaterials exhibited octahedral, nanosheet, and spherical morphologies with structural defects and surface segregation of phosphorous and potassium, originating from the extracts. The presence of P and K in the oxide nanostructures significantly improved their catalytic CO oxidation activity. When normalized by the specific surface area, the microalgae-derived catalysts exceeded a commercial benchmark catalyst. In situ studies revealed differences in oxygen mobility and carbonate formation during the reaction. The obtained insights may facilitate the development of new synthesis strategies for manufacturing highly active Co3O4 nanocatalysts.

3.
Top Catal ; 66(19-20): 1539-1552, 2023.
Article in English | MEDLINE | ID: mdl-37830054

ABSTRACT

Syngas can be produced from biomethane via Partial Oxidation of Methane (POM), being an attractive route since it is ecofriendly and sustainable. In this work, catalysts of Ni supported on MgO-ZrO2 solid solutions, prepared by a one-step polymerization method, were characterized by HRTEM/EDX, XRD, XPS, H2-TPR, and in situ XRD. All catalysts, including Ni/ZrO2 and Ni/MgO as reference, were tested for POM (CH4:O2 molar ratio 2, 750 ºC, 1 atm). NiO/MgO/ZrO2 contained two solid-solutions, MgO-ZrO2 and NiO-MgO, as revealed by XRD and XPS. Ni (30 wt%) supported on MgO-ZrO2 solid solution exhibited high methane conversion and hydrogen selectivity. However, depending on the MgO amount (0, 4, 20, 40, 100 molar percent) major differences in NiO reducibility, growth of Ni0 crystallite size during H2 reduction and POM, and in carbon deposition rates were observed. Interestingly, catalysts with lower MgO content achieved the highest CH4 conversion (~ 95%), high selectivity to H2 (1.7) and CO (0.8), and low carbon deposition rates (0.024 g carbon.gcat-1 h-1) with Ni4MgZr (4 mol% MgO) turning out to be the best catalyst. In situ XRD during POM indicated metallic Ni nanoparticles (average crystallite size of 31 nm), supported by MgO-ZrO2 solid solution, with small amounts of NiO-MgO being present as well. The presence of MgO also influenced the morphology of the carbon deposits, leading to filaments instead of amorphous carbon. A combustion-reforming mechanism is suggested and using a MgO-ZrO2 solid solution support strongly improves catalytic performance, which is attributed to effective O2, CO2 and H2O activation at the Ni/MgO-ZrO2 interface.

4.
J Appl Crystallogr ; 53(Pt 4): 1080-1086, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32788905

ABSTRACT

AlN slices from bulk crystals grown under low thermomechanical stress conditions via the physical vapor transport (PVT) method were analyzed by X-ray methods to study the influence of the growth mode on the crystal quality. Defect types and densities were analyzed along axial [0001] as well as lateral growth directions. X-ray diffraction (0110) rocking-curve mappings of representative wafer cuts reveal a low mean FWHM of 13.4 arcsec, indicating the generally high crystal quality. The total dislocation density of 2 × 103 cm-2 as determined by X-ray topography is low and dislocations are largely threading edge dislocations of b = 1/3〈1120〉 type. The absence of basal plane dislocations in homogeneous crystal regions void of macroscopic defects can be linked to the low-stress growth conditions. Under the investigated growth conditions this high crystal quality can be maintained both along the axial [0001] direction and within lateral growth directions. Exceptions to this are some locally confined, misoriented grains and defect clusters, most of which are directly inherited from the seed or are formed due to the employed seed fixation technique on the outer periphery of the crystals. Seed-shaping experiments indicate no apparent kinetic limitations for an enhanced lateral expansion rate and the resulting crystal quality, specifically with regard to the growth mode on a-face facets.

SELECTION OF CITATIONS
SEARCH DETAIL
...