Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(3): 1404-1419, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38050972

ABSTRACT

Even though Bacillus subtilis is one of the most studied organisms, no function has been identified for about 20% of its proteins. Among these unknown proteins are several RNA- and ribosome-binding proteins suggesting that they exert functions in cellular information processing. In this work, we have investigated the RNA-binding protein YlxR. This protein is widely conserved in bacteria and strongly constitutively expressed in B. subtilis suggesting an important function. We have identified the RNA subunit of the essential RNase P as the binding partner of YlxR. The main activity of RNase P is the processing of 5' ends of pre-tRNAs. In vitro processing assays demonstrated that the presence of YlxR results in reduced RNase P activity. Chemical cross-linking studies followed by in silico docking analysis and experiments with site-directed mutant proteins suggest that YlxR binds to the region of the RNase P RNA that is important for binding and cleavage of the pre-tRNA substrate. We conclude that the YlxR protein is a novel interaction partner of the RNA subunit of RNase P that serves to finetune RNase P activity to ensure appropriate amounts of mature tRNAs for translation. We rename the YlxR protein RnpM for RNase P modulator.


Subject(s)
Bacillus subtilis , Bacterial Proteins , RNA-Binding Proteins , Ribonuclease P , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Endoribonucleases/metabolism , Ribonuclease P/metabolism , RNA Precursors/metabolism , RNA, Bacterial/metabolism , RNA, Transfer/metabolism , RNA-Binding Proteins/metabolism
2.
Mol Microbiol ; 120(1): 8-19, 2023 07.
Article in English | MEDLINE | ID: mdl-36882621

ABSTRACT

Model organisms such as the Gram-positive bacterium Bacillus subtilis have been studied intensively for decades. However, even for model organisms, no function has been identified for about one fourth of all proteins. It has recently been realized that such understudied proteins as well as poorly studied functions set a limitation to our understanding of the requirements for cellular life, and the Understudied Proteins Initiative has been launched. Of poorly studied proteins, those that are strongly expressed are likely to be important to the cell and should therefore be considered high priority in further studies. Since the functional analysis of unknown proteins can be extremely laborious, a minimal knowledge is required prior to targeted functional studies. In this review, we discuss strategies to obtain such a minimal annotation, for example, from global interaction, expression, or localization studies. We present a set of 41 highly expressed and poorly studied proteins of B. subtilis. Several of these proteins are thought or known to bind RNA and/or the ribosome, some may control the metabolism of B. subtilis, and another subset of particularly small proteins may act as regulatory elements to control the expression of downstream genes. Moreover, we discuss the challenges of poorly studied functions with a focus on RNA-binding proteins, amino acid transport, and the control of metabolic homeostasis. The identification of the functions of the selected proteins not only will strongly advance our knowledge on B. subtilis, but also on other organisms since many of the proteins are conserved in many groups of bacteria.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Ribosomes/metabolism , Homeostasis
3.
J Biol Chem ; 298(7): 102144, 2022 07.
Article in English | MEDLINE | ID: mdl-35714772

ABSTRACT

The bacterial second messenger c-di-AMP controls essential cellular processes, including potassium and osmolyte homeostasis. This makes synthesizing enzymes and components involved in c-di-AMP signal transduction intriguing as potential targets for drug development. The c-di-AMP receptor protein DarB of Bacillus subtilis binds the Rel protein and triggers the Rel-dependent stringent response to stress conditions; however, the structural basis for this trigger is unclear. Here, we report crystal structures of DarB in the ligand-free state and of DarB complexed with c-di-AMP, 3'3'-cGAMP, and AMP. We show that DarB forms a homodimer with a parallel, head-to-head assembly of the monomers. We also confirm the DarB dimer binds two cyclic dinucleotide molecules or two AMP molecules; only one adenine of bound c-di-AMP is specifically recognized by DarB, while the second protrudes out of the donut-shaped protein. This enables DarB to bind also 3'3'-cGAMP, as only the adenine fits in the active site. In absence of c-di-AMP, DarB binds to Rel and stimulates (p)ppGpp synthesis, whereas the presence of c-di-AMP abolishes this interaction. Furthermore, the DarB crystal structures reveal no conformational changes upon c-di-AMP binding, leading us to conclude the regulatory function of DarB on Rel must be controlled directly by the bound c-di-AMP. We thus derived a structural model of the DarB-Rel complex via in silico docking, which was validated with mass spectrometric analysis of the chemically crosslinked DarB-Rel complex and mutagenesis studies. We suggest, based on the predicted complex structure, a mechanism of stringent response regulation by c-di-AMP.


Subject(s)
Bacterial Proteins , Dinucleoside Phosphates , Adenine/metabolism , Adenosine Monophosphate/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Dinucleoside Phosphates/chemistry , Dinucleoside Phosphates/metabolism
4.
Nat Commun ; 12(1): 1210, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619274

ABSTRACT

Many bacteria use cyclic di-AMP as a second messenger to control potassium and osmotic homeostasis. In Bacillus subtilis, several c-di-AMP binding proteins and RNA molecules have been identified. Most of these targets play a role in controlling potassium uptake and export. In addition, c-di-AMP binds to two conserved target proteins of unknown function, DarA and DarB, that exclusively consist of the c-di-AMP binding domain. Here, we investigate the function of the c-di-AMP-binding protein DarB in B. subtilis, which consists of two cystathionine-beta synthase (CBS) domains. We use an unbiased search for DarB interaction partners and identify the (p)ppGpp synthetase/hydrolase Rel as a major interaction partner of DarB. (p)ppGpp is another second messenger that is formed upon amino acid starvation and under other stress conditions to stop translation and active metabolism. The interaction between DarB and Rel only takes place if the bacteria grow at very low potassium concentrations and intracellular levels of c-di-AMP are low. We show that c-di-AMP inhibits the binding of DarB to Rel and the DarB-Rel interaction results in the Rel-dependent accumulation of pppGpp. These results link potassium and c-di-AMP signaling to the stringent response and thus to the global control of cellular physiology.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Dinucleoside Phosphates/metabolism , Guanosine Pentaphosphate/metabolism , Second Messenger Systems , Bacterial Proteins/chemistry , Hydrolases/metabolism , Models, Biological , Protein Binding , Protein Domains , Signal Transduction
5.
mBio ; 13(1): e0360221, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35130724

ABSTRACT

In Bacillus subtilis and other Gram-positive bacteria, cyclic di-AMP is an essential second messenger that signals potassium availability by binding to a variety of proteins. In some bacteria, c-di-AMP also binds to the pyruvate carboxylase to inhibit its activity. We have discovered that in B. subtilis the c-di-AMP target protein DarB, rather than c-di-AMP itself, specifically binds to pyruvate carboxylase both in vivo and in vitro. This interaction stimulates the activity of the enzyme, as demonstrated by in vitro enzyme assays and in vivo metabolite determinations. Both the interaction and the activation of enzyme activity require apo-DarB and are inhibited by c-di-AMP. Under conditions of potassium starvation and corresponding low c-di-AMP levels, the demand for citric acid cycle intermediates is increased. Apo-DarB helps to replenish the cycle by activating both pyruvate carboxylase gene expression and enzymatic activity via triggering the stringent response as a result of its interaction with the (p)ppGpp synthetase Rel and by direct interaction with the enzyme, respectively. IMPORTANCE If bacteria experience a starvation for potassium, by far the most abundant metal ion in every living cell, they have to activate high-affinity potassium transporters, switch off growth activities such as translation and transcription of many genes or replication, and redirect the metabolism in a way that the most essential functions of potassium can be taken over by metabolites. Importantly, potassium starvation triggers a need for glutamate-derived amino acids. In many bacteria, the responses to changing potassium availability are orchestrated by a nucleotide second messenger, cyclic di-AMP. c-di-AMP binds to factors involved directly in potassium homeostasis and to dedicated signal transduction proteins. Here, we demonstrate that in the Gram-positive model organism Bacillus subtilis, the c-di-AMP receptor protein DarB can bind to and, thus, activate pyruvate carboxylase, the enzyme responsible for replenishing the citric acid cycle. This interaction takes place under conditions of potassium starvation if DarB is present in the apo form and the cells are in need of glutamate. Thus, DarB links potassium availability to the control of central metabolism.


Subject(s)
Bacillus subtilis , Cyclic AMP , Cyclic AMP/metabolism , Bacillus subtilis/genetics , Pyruvate Carboxylase/metabolism , Bacterial Proteins/metabolism , Second Messenger Systems/physiology , Dinucleoside Phosphates/metabolism , Glutamic Acid/metabolism , Potassium/metabolism
6.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32273362

ABSTRACT

Nine metagenomes derived from university hospital effluent, at different stages of wastewater treatment, and the river adjacent to the wastewater treatment plant in Göttingen, Germany, were analyzed. Bacteria was the dominant domain and mainly comprised Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria The microbiomes harbored a diverse microbial community with a site-specific structure.

7.
Environ Microbiol ; 21(4): 1287-1305, 2019 04.
Article in English | MEDLINE | ID: mdl-30666812

ABSTRACT

The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Adaptation, Physiological/genetics , Genome, Bacterial/genetics , Glycine/analogs & derivatives , Amino Acid Transport Systems, Acidic/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Enzyme Activation/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Glycine/metabolism , Glycine/toxicity , Herbicides/metabolism , Herbicides/toxicity , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...