Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Channels (Austin) ; 15(1): 179-193, 2021 12.
Article in English | MEDLINE | ID: mdl-33427574

ABSTRACT

A fundamental mechanism that drives the propagation of electrical signals in the nervous system is the activation of voltage-gated sodium channels. The sodium channel subtype Nav1.7 is critical for the transmission of pain-related signaling, with gain-of-function mutations in Nav1.7 resulting in various painful pathologies. Loss-of-function mutations cause complete insensitivity to pain and anosmia in humans that otherwise have normal nervous system function, rendering Nav1.7 an attractive target for the treatment of pain. Despite this, no Nav1.7 selective therapeutic has been approved for use as an analgesic to date. Here we present a summary of research that has focused on engineering peptides found in spider venoms to produce Nav1.7 selective antagonists. We discuss the progress that has been made on various scaffolds from different venom families and highlight the challenges that remain in the effort to produce a Nav1.7 selective, venom-based analgesic.


Subject(s)
Spider Venoms , Analgesics , NAV1.7 Voltage-Gated Sodium Channel , Pain
2.
J Clin Invest ; 130(11): 6158-6170, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33074244

ABSTRACT

The α6ß4 nicotinic acetylcholine receptor (nAChR) is enriched in dorsal root ganglia neurons and is an attractive non-opioid therapeutic target for pain. However, difficulty expressing human α6ß4 receptors in recombinant systems has precluded drug discovery. Here, genome-wide screening identified accessory proteins that enable reconstitution of human α6ß4 nAChRs. BARP, an auxiliary subunit of voltage-dependent calcium channels, promoted α6ß4 surface expression while IRE1α, an unfolded protein response sensor, enhanced α6ß4 receptor assembly. Effects on α6ß4 involve BARP's N-terminal region and IRE1α's splicing of XBP1 mRNA. Furthermore, clinical efficacy of nicotinic agents in relieving neuropathic pain best correlated with their activity on α6ß4. Finally, BARP-knockout, but not NACHO-knockout mice lacked nicotine-induced antiallodynia, highlighting the functional importance of α6ß4 in pain. These results identify roles for IRE1α and BARP in neurotransmitter receptor assembly and unlock drug discovery for the previously elusive α6ß4 receptor.


Subject(s)
Cholinergic Agonists/pharmacology , Endoribonucleases/metabolism , Gene Expression Regulation/drug effects , Protein Serine-Threonine Kinases/metabolism , Receptors, Cholinergic/biosynthesis , Animals , Endoribonucleases/genetics , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , RNA Splicing/drug effects , Rats , Receptors, Cholinergic/genetics , X-Box Binding Protein 1/genetics
3.
J Biol Chem ; 295(13): 4359-4366, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32079674

ABSTRACT

Excitatory amino acid transporters (EAATs) represent a protein family that is an emerging drug target with great therapeutic potential for managing central nervous system disorders characterized by dysregulation of glutamatergic neurotransmission. As such, it is of significant interest to discover selective modulators of EAAT2 function. Here, we applied computational methods to identify specific EAAT2 inhibitors. Utilizing a homology model of human EAAT2, we identified a binding pocket at the interface of the transport and trimerization domain. We next conducted a high-throughput virtual screen against this site and identified a selective class of EAAT2 inhibitors that were tested in glutamate uptake and whole-cell electrophysiology assays. These compounds represent potentially useful pharmacological tools suitable for further exploration of the therapeutic potential of EAAT2 and may provide molecular insights into mechanisms of allosteric modulation for glutamate transporters.


Subject(s)
Amino Acid Transport System X-AG/antagonists & inhibitors , Binding Sites/drug effects , Central Nervous System Diseases/drug therapy , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Amino Acid Transport System X-AG/chemistry , Amino Acid Transport System X-AG/genetics , Animals , Binding Sites/genetics , Biological Transport/drug effects , Central Nervous System Diseases/genetics , Central Nervous System Diseases/pathology , Computational Biology , Excitatory Amino Acid Transporter 2/chemistry , Excitatory Amino Acid Transporter 2/genetics , Humans , Protein Binding/drug effects , Synaptic Transmission/drug effects , User-Computer Interface
4.
J Biol Chem ; 295(5): 1315-1327, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31871053

ABSTRACT

Pain is a significant public health burden in the United States, and current treatment approaches rely heavily on opioids, which often have limited efficacy and can lead to addiction. In humans, functional loss of the voltage-gated sodium channel Nav1.7 leads to pain insensitivity without deficits in the central nervous system. Accordingly, discovery of a selective Nav1.7 antagonist should provide an analgesic without abuse liability and an improved side-effect profile. Huwentoxin-IV, a component of tarantula venom, potently blocks sodium channels and is an attractive scaffold for engineering a Nav1.7-selective molecule. To define the functional impact of alterations in huwentoxin-IV sequence, we produced a library of 373 point mutants and tested them for Nav1.7 and Nav1.2 activity. We then combined favorable individual changes to produce combinatorial mutants that showed further improvements in Nav1.7 potency (E1N, E4D, Y33W, Q34S-Nav1.7 pIC50 = 8.1 ± 0.08) and increased selectivity over other Nav isoforms (E1N, R26K, Q34S, G36I, Nav1.7 pIC50 = 7.2 ± 0.1, Nav1.2 pIC50 = 6.1 ± 0.18, Nav1.3 pIC50 = 6.4 ± 1.0), Nav1.4 is inactive at 3 µm, and Nav1.5 is inactive at 10 µm We also substituted noncoded amino acids at select positions in huwentoxin-IV. Based on these results, we identify key determinants of huwentoxin's Nav1.7 inhibition and propose a model for huwentoxin-IV's interaction with Nav1.7. These findings uncover fundamental features of huwentoxin involved in Nav1.7 blockade, provide a foundation for additional optimization of this molecule, and offer a basis for the development of a safe and effective analgesic.


Subject(s)
Analgesics/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Spider Venoms/chemistry , Spider Venoms/genetics , Voltage-Gated Sodium Channel Blockers/pharmacology , Amino Acid Sequence/genetics , Drug Development , HEK293 Cells , Humans , Molecular Docking Simulation , Mutagenesis , NAV1.2 Voltage-Gated Sodium Channel/drug effects , NAV1.2 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/drug therapy , Peptide Library , Point Mutation , Protein Engineering , Protein Isoforms , Recombinant Proteins , Spider Venoms/isolation & purification
5.
Eur J Pharmacol ; 853: 299-307, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30965058

ABSTRACT

Transient receptor potential melastatin type 2 (TRPM2) is a cation channel activated by free intracellular ADP-ribose and reactive oxygen species. TRPM2 signaling has been linked to the pathophysiology of CNS disorders such as neuropathic pain, bipolar disorder and Alzheimer's disease. In this manuscript, we describe the discovery of JNJ-28583113, a potent brain penetrant TRPM2 antagonist. Ca2+ flux assays in cells overexpressing TRPM2 and electrophysiological recordings were used to test the pharmacology of JNJ-28583113. JNJ-28583113 was assayed in vitro on GSK-3 phosphorylation levels, cell death, cytokine release in microglia and unbiased morphological phenotypic analysis. Finally, we dosed animals to evaluate its pharmacokinetic properties. Our results showed that JNJ-28583113 is a potent (126 ±â€¯0.5 nM) TRPM2 antagonist. Blocking TRPM2 caused phosphorylation of GSK3α and ß subunits. JNJ-28583113 also protected cells from oxidative stress induced cell death as well as morphological changes induced by non-cytotoxic concentrations of H2O2. In addition, inhibiting TRPM2 blunted cytokine release in response to pro-inflammatory stimuli in microglia. Lastly, we showed that JNJ-28583113 was brain penetrant but not suitable for systemic dosing as it was rapidly metabolized in vivo. While the in-vitro pharmacology of JNJ-28583113 is the best in class, its in-vivo properties would need optimization to assist in further probing key roles of TRPM2 in CNS pathophysiology.


Subject(s)
Drug Discovery , Pyrazoles/pharmacology , TRPM Cation Channels/antagonists & inhibitors , Animals , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Rats
6.
J Med Chem ; 60(11): 4559-4572, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28493698

ABSTRACT

The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.


Subject(s)
Purinergic P2X Receptor Antagonists/pharmacology , Pyridines/pharmacology , Receptors, Purinergic P2X7/drug effects , Animals , Biological Availability , Humans , Purinergic P2X Receptor Antagonists/pharmacokinetics
7.
Biochem Pharmacol ; 135: 1-11, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28214518

ABSTRACT

Maintaining the integrity of cellular membranes is critical to protecting metabolic activities and genetic information from the environment. Regulation of transport across membranes of essential chemicals, including water, nutrients, hormones and many drugs, is therefore key to cellular homeostasis and physiological processes. The two main transporter superfamilies are ATP-binding cassette (ABC) transporters that primarily function as efflux transporters, and the solute carrier (SLC) transporters. SLC transporters encompass 52 gene families with almost 400 different human transporter genes. Although long under-explored, SLC transporters are an emerging drug target class and the molecular target of several approved inhibitor drugs, such as selective serotonin reuptake inhibitors (SSRIs) for depression and sodium/glucose co-transporter (SGLT2) inhibitors for diabetes. Interestingly though, although loss-of-function mutations in numerous human SLC transporters are linked to Mendelian diseases, few reports of SLC transporter activators have appeared, and only inhibitors have been advanced to clinical studies. In this commentary, we discuss several strategies for potentiating SLC transporter function, from direct acting potentiators to modulators of transcription, translation or trafficking. We review the progress made in recent years toward the understanding of the structural and molecular basis of SLC transporter function and the pathways and mechanisms that regulate SLC expression, and describe the opportunities these new insights present for discovery of SLC transporter potentiators. Finally, we highlight the challenges associated with the various approaches and provide some thoughts on future directions that might facilitate the search for SLC potentiators with therapeutic potential.


Subject(s)
Drug Discovery/methods , Membrane Transport Proteins/metabolism , Solute Carrier Proteins/metabolism , Animals , Biological Transport/drug effects , Biological Transport/physiology , Cell Membrane/drug effects , Cell Membrane/metabolism , Drug Discovery/trends , Humans , Membrane Transport Proteins/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport/drug effects , Protein Transport/physiology , Selective Serotonin Reuptake Inhibitors/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Solute Carrier Proteins/chemistry
8.
PLoS One ; 12(1): e0170102, 2017.
Article in English | MEDLINE | ID: mdl-28107393

ABSTRACT

Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.


Subject(s)
Kv1.3 Potassium Channel/antagonists & inhibitors , Lymphocyte Activation , Potassium Channel Blockers/pharmacology , T-Lymphocyte Subsets , T-Lymphocytes/immunology , Gene Expression Profiling , Humans , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Patch-Clamp Techniques
9.
Mol Pharmacol ; 90(6): 766-774, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27754898

ABSTRACT

In the liver, citrate is a key metabolic intermediate involved in the regulation of glycolysis and lipid synthesis and reduced expression of the hepatic citrate SLC13A5 transporter has been shown to improve metabolic outcomes in various animal models. Although inhibition of hepatic extracellular citrate uptake through SLC13A5 has been suggested as a potential therapeutic approach for Type-2 diabetes and/or fatty liver disease, so far, only a few SLC13A5 inhibitors have been identified. Moreover, their mechanism of action still remains unclear, potentially limiting their utility for in vivo proof-of-concept studies. In this study, we characterized the pharmacology of the recently identified hydroxysuccinic acid SLC13A5 inhibitors, PF-06649298 and PF-06761281, using a combination of 14C-citrate uptake, a membrane potential assay and electrophysiology. In contrast to their previously proposed mechanism of action, our data suggest that both PF-06649298 and PF-06761281 are allosteric, state-dependent SLC13A5 inhibitors, with low-affinity substrate activity in the absence of citrate. As allosteric state-dependent modulators, the inhibitory potency of both compounds is highly dependent on the ambient citrate concentration and our detailed mechanism of action studies therefore, may be of value in interpreting the in vivo effects of these compounds.


Subject(s)
Malates/pharmacology , Phenylbutyrates/pharmacology , Pyridines/pharmacology , Succinates/pharmacology , Symporters/antagonists & inhibitors , Allosteric Regulation/drug effects , Carbon Radioisotopes , Citric Acid/metabolism , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Malates/chemistry , Models, Biological , Patch-Clamp Techniques , Phenylbutyrates/chemistry , Pyridines/chemistry , Substrate Specificity/drug effects , Succinates/chemistry , Symporters/metabolism
10.
Bioorg Med Chem Lett ; 26(19): 4781-4784, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27595421

ABSTRACT

The synthesis, SAR and preclinical characterization of a series of 6-chloro-N-(2-(4,4-difluoropiperidin-1-yl)-2-(2-(trifluoromethyl)pyrimidin-5-yl)ethyl)quinoline-5-carboxamide based P2X7 antagonists is described herein. The lead compounds are potent inhibitors in Ca(2+) flux and whole blood IL-1ß P2X7 release assays at both human and mouse isoforms. Compound 1e showed a robust reduction of IL-1ß release in a mouse ex vivo model with a 50mg/kg oral dose. Evaluation of compound 1e in the mouse SNI tactile allodynia, carrageenan-induced paw edema or CIA models resulted in no analgesic or anti-inflammatory effects.


Subject(s)
Purinergic P2X Receptor Antagonists/pharmacology , Quinolines/pharmacology , Animals , Drug Discovery , Humans , Interleukin-1beta/metabolism , Mice , Purinergic P2X Receptor Antagonists/chemistry , Quinolines/chemistry , Structure-Activity Relationship
11.
J Pharmacol Exp Ther ; 357(2): 394-414, 2016 May.
Article in English | MEDLINE | ID: mdl-26989142

ABSTRACT

Members of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) subtype of ionotropic glutamate receptors mediate the majority of fast synaptic transmission within the mammalian brain and spinal cord, representing attractive targets for therapeutic intervention. Here, we describe novel AMPA receptor modulators that require the presence of the accessory protein CACNG8, also known as transmembrane AMPA receptor regulatory protein γ8 (TARP-γ8). Using calcium flux, radioligand binding, and electrophysiological assays of wild-type and mutant forms of TARP-γ8, we demonstrate that these compounds possess a novel mechanism of action consistent with a partial disruption of the interaction between the TARP and the pore-forming subunit of the channel. One of the molecules, 5-[2-chloro-6-(trifluoromethoxy)phenyl]-1,3-dihydrobenzimidazol-2-one (JNJ-55511118), had excellent pharmacokinetic properties and achieved high receptor occupancy following oral administration. This molecule showed strong, dose-dependent inhibition of neurotransmission within the hippocampus, and a strong anticonvulsant effect. At high levels of receptor occupancy in rodent in vivo models, JNJ-55511118 showed a strong reduction in certain bands on electroencephalogram, transient hyperlocomotion, no motor impairment on rotarod, and a mild impairment in learning and memory. JNJ-55511118 is a novel tool for reversible AMPA receptor inhibition, particularly within the hippocampus, with potential therapeutic utility as an anticonvulsant or neuroprotectant. The existence of a molecule with this mechanism of action demonstrates the possibility of pharmacological targeting of accessory proteins, increasing the potential number of druggable targets.


Subject(s)
Benzimidazoles/therapeutic use , Calcium Channels/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Receptors, AMPA/drug effects , Animals , Calcium Channels/genetics , Calcium Signaling/drug effects , Drug Design , Electroencephalography/drug effects , HEK293 Cells , Humans , Learning/drug effects , Memory/drug effects , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Mutation/genetics , Neurons/drug effects , Postural Balance/drug effects , Rats, Sprague-Dawley , Receptors, AMPA/genetics
12.
J Headache Pain ; 16: 57, 2015.
Article in English | MEDLINE | ID: mdl-26109436

ABSTRACT

BACKGROUND: The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine. METHODS: Male Sprague-Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation. Expression of the immediate early gene c-fos was measured following intracisternal application of inflammatory soup. In a second model, CGRP release into the external jugular vein was determined following injection of capsaicin into the carotid artery. RESULTS: Inflammatory up-regulation of c-fos in the trigeminal brain stem complex was dose-dependently and significantly reduced by both TRPV1 antagonists. Capsaicin-induced CGRP release was attenuated by JNJ-38893777 only in higher dosage. JNJ-17203212 was effective in all doses and fully abolished CGRP release in a time and dose-dependent manner. CONCLUSION: Our results describe two TRPV1 antagonists that are effective in two in vivo models of migraine. These results suggest that TRPV1 may play a role in the pathophysiological mechanisms, which are relevant to migraine.


Subject(s)
Aminopyridines/therapeutic use , Disease Models, Animal , Migraine Disorders/drug therapy , Piperazines/therapeutic use , TRPV Cation Channels/antagonists & inhibitors , Aminopyridines/pharmacology , Animals , Capsaicin/toxicity , Dose-Response Relationship, Drug , Genes, fos/drug effects , Male , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Treatment Outcome , Up-Regulation/drug effects
13.
Clin J Pain ; 31(11): 976-82, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25585270

ABSTRACT

OBJECTIVES: Previous studies have established the role of SCN9A in various pain conditions, including idiopathic small fiber neuropathy. In the present study, we interrogate the relationship between common and rare variants in SCN9A gene and chronic neuropathic pain associated with diabetic peripheral neuropathy. DESIGN: Using a cohort of 938 patients of European ancestry with chronic neuropathic pain associated with diabetic peripheral neuropathy enrolled in 6 clinical studies and 2 controls (POPRES, n=2624 and Coriell, n=1029), we examined the relationship between SCN9A variants and neuropathic pain in a case-control study using a 2-stage design. The exonic regions of SCN9A were sequenced in a subset of 244 patients with neuropathic pain, and the variants discovered were compared with POPRES control (stage 1). The top associated variants were followed up by genotyping in the entire case collection and Coriell controls restricting the analysis to the matching patients from the United States and Canada only (stage 2). RESULTS: Seven variants were found to be associated with neuropathic pain at the sequencing stage. Four variants (Asp1908Gly, Val991Leu/Met932Leu, and an intronic variant rs74449889) were confirmed by genotyping to occur at a higher frequency in cases than controls (odds ratios ∼2.1 to 2.6, P=0.05 to 0.009). Val991Leu/Met932Leu was also associated with the severity of pain as measured by pain score Numeric Rating Scale (NRS-11, P=0.047). Val991Leu/Met932Leu variants were in complete linkage disequilibrium and previously shown to cause hyperexcitability in dorsal root ganglia neurons. CONCLUSIONS: The association of SCN9A variants with neuropathic pain and pain severity suggests a role of SCN9A in the disease etiology of neuropathic pain.


Subject(s)
Chronic Pain/genetics , Diabetic Neuropathies/genetics , Genetic Predisposition to Disease , Genetic Variation , NAV1.7 Voltage-Gated Sodium Channel/genetics , Neuralgia/genetics , Canada , Chronic Pain/physiopathology , Cohort Studies , Diabetic Neuropathies/physiopathology , Exons , Female , Genotyping Techniques , Humans , Introns , Linkage Disequilibrium , Male , Middle Aged , Neuralgia/physiopathology , Pain Measurement , Severity of Illness Index , United States , White People/genetics
14.
J Biol Chem ; 289(33): 22704-22714, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24939846

ABSTRACT

Ion channels are an attractive class of drug targets, but progress in developing inhibitors for therapeutic use has been limited largely due to challenges in identifying subtype selective small molecules. Animal venoms provide an alternative source of ion channel modulators, and the venoms of several species, such as scorpions, spiders and snails, are known to be rich sources of ion channel modulating peptides. Importantly, these peptides often bind to hyper-variable extracellular loops, creating the potential for subtype selectivity rarely achieved with small molecules. We have engineered scorpion venom peptides and incorporated them in fusion proteins to generate highly potent and selective Kv1.3 inhibitors with long in vivo half-lives. Kv1.3 has been reported to play a role in human T cell activation, and therefore, these Kv1.3 inhibitor fusion proteins may have potential for the treatment of autoimmune diseases. Our results support an emerging approach to generating subtype selective therapeutic ion channel inhibitors.


Subject(s)
Arthropod Proteins/pharmacology , Kv1.3 Potassium Channel/antagonists & inhibitors , Lymphocyte Activation/drug effects , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Protein Engineering , Scorpion Venoms/pharmacology , T-Lymphocytes/metabolism , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , CHO Cells , Cricetinae , Cricetulus , Drug Delivery Systems , Half-Life , Humans , Kv1.3 Potassium Channel/genetics , Kv1.3 Potassium Channel/metabolism , Peptides/chemistry , Peptides/genetics , Potassium Channel Blockers/chemistry , Rats , Scorpion Venoms/chemistry , Scorpion Venoms/genetics
15.
Proc Natl Acad Sci U S A ; 111(7): 2758-63, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24497506

ABSTRACT

A cone snail venom peptide, µO§-conotoxin GVIIJ from Conus geographus, has a unique posttranslational modification, S-cysteinylated cysteine, which makes possible formation of a covalent tether of peptide to its target Na channels at a distinct ligand-binding site. µO§-conotoxin GVIIJ is a 35-aa peptide, with 7 cysteine residues; six of the cysteines form 3 disulfide cross-links, and one (Cys24) is S-cysteinylated. Due to limited availability of native GVIIJ, we primarily used a synthetic analog whose Cys24 was S-glutathionylated (abbreviated GVIIJSSG). The peptide-channel complex is stabilized by a disulfide tether between Cys24 of the peptide and Cys910 of rat (r) NaV1.2. A mutant channel of rNaV1.2 lacking a cysteine near the pore loop of domain II (C910L), was >10(3)-fold less sensitive to GVIIJSSG than was wild-type rNaV1.2. In contrast, although rNaV1.5 was >10(4)-fold less sensitive to GVIIJSSG than NaV1.2, an rNaV1.5 mutant with a cysteine in the homologous location, rNaV1.5[L869C], was >10(3)-fold more sensitive than wild-type rNaV1.5. The susceptibility of rNaV1.2 to GVIIJSSG was significantly altered by treating the channels with thiol-oxidizing or disulfide-reducing agents. Furthermore, coexpression of rNaVß2 or rNaVß4, but not that of rNaVß1 or rNaVß3, protected rNaV1.1 to -1.7 (excluding NaV1.5) against block by GVIIJSSG. Thus, GVIIJ-related peptides may serve as probes for both the redox state of extracellular cysteines and for assessing which NaVß- and NaVα-subunits are present in native neurons.


Subject(s)
Conotoxins/toxicity , Disulfides/metabolism , NAV1.2 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Voltage-Gated Sodium Channel Blockers/toxicity , Amino Acid Sequence , Animals , Base Sequence , Chromatography, High Pressure Liquid , Conotoxins/genetics , Conotoxins/metabolism , Cysteine/metabolism , DNA Primers/genetics , DNA, Complementary/genetics , Molecular Sequence Data , Oocytes/metabolism , Patch-Clamp Techniques , Rats , Sequence Analysis, DNA , Tandem Mass Spectrometry , Voltage-Gated Sodium Channel Blockers/metabolism
16.
Curr Protoc Pharmacol ; 64: 11.1.1-17, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-26344208

ABSTRACT

This unit provides an overview of the principal electrophysiological techniques commonly used for the study of ionic currents and the ion channels that mediate them. These techniques include electroencephalograms (EEGs), electrocardiograms (ECGs), single- and multiunit extracellular recording, multielectrode arrays, transepithelial recording, impedance measurements, and current-clamp, voltage-clamp, patch-clamp, and lipid bilayer recording. The unit also discusses recent advances in high-throughput, automated electrophysiological techniques for drug discovery and the use of stem cells as a tissue source.


Subject(s)
Electrodiagnosis/methods , Animals , Drug Discovery/methods , Electrocardiography/methods , Electrocardiography/standards , Electrodiagnosis/standards , Electroencephalography/methods , Electroencephalography/standards , Electrophysiological Phenomena , Humans , Patch-Clamp Techniques/methods , Patch-Clamp Techniques/standards
17.
Br J Pharmacol ; 170(3): 624-40, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23889535

ABSTRACT

BACKGROUND AND PURPOSE: An increasing body of evidence suggests that the purinergic receptor P2X, ligand-gated ion channel, 7 (P2X7) in the CNS may play a key role in neuropsychiatry, neurodegeneration and chronic pain. In this study, we characterized JNJ-47965567, a centrally permeable, high-affinity, selective P2X7 antagonist. EXPERIMENTAL APPROACH: We have used a combination of in vitro assays (calcium flux, radioligand binding, electrophysiology, IL-1ß release) in both recombinant and native systems. Target engagement of JNJ-47965567 was demonstrated by ex vivo receptor binding autoradiography and in vivo blockade of Bz-ATP induced IL-1ß release in the rat brain. Finally, the efficacy of JNJ-47965567 was tested in standard models of depression, mania and neuropathic pain. KEY RESULTS: JNJ-47965567 is potent high affinity (pKi 7.9 ± 0.07), selective human P2X7 antagonist, with no significant observed speciation. In native systems, the potency of the compound to attenuate IL-1ß release was 6.7 ± 0.07 (human blood), 7.5 ± 0.07 (human monocytes) and 7.1 ± 0.1 (rat microglia). JNJ-47965567 exhibited target engagement in rat brain, with a brain EC50 of 78 ± 19 ng·mL(-1) (P2X7 receptor autoradiography) and functional block of Bz-ATP induced IL-1ß release. JNJ-47965567 (30 mg·kg(-1) ) attenuated amphetamine-induced hyperactivity and exhibited modest, yet significant efficacy in the rat model of neuropathic pain. No efficacy was observed in forced swim test. CONCLUSION AND IMPLICATIONS: JNJ-47965567 is centrally permeable, high affinity P2X7 antagonist that can be used to probe the role of central P2X7 in rodent models of CNS pathophysiology.


Subject(s)
Brain/drug effects , Niacinamide/analogs & derivatives , Piperazines/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/drug effects , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Analgesics/metabolism , Analgesics/pharmacology , Animals , Antidepressive Agents/pharmacology , Antimanic Agents/pharmacology , Behavior, Animal/drug effects , Binding, Competitive , Bipolar Disorder/metabolism , Bipolar Disorder/prevention & control , Bipolar Disorder/psychology , Blood-Brain Barrier/metabolism , Brain/metabolism , Calcium Signaling/drug effects , Capillary Permeability , Cell Line , Depression/metabolism , Depression/prevention & control , Depression/psychology , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Humans , Interleukin-1beta/metabolism , Macaca , Male , Mice , Mice, Inbred C57BL , Neuralgia/metabolism , Neuralgia/prevention & control , Neuralgia/psychology , Niacinamide/metabolism , Niacinamide/pharmacology , Piperazines/metabolism , Protein Binding , Purinergic P2X Receptor Antagonists/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X7/metabolism , Time Factors , Transfection
18.
J Biol Chem ; 288(31): 22707-20, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23760503

ABSTRACT

Voltage-gated sodium channels (VGSCs) are essential to the normal function of the vertebrate nervous system. Aberrant function of VGSCs underlies a variety of disorders, including epilepsy, arrhythmia, and pain. A large number of animal toxins target these ion channels and may have significant therapeutic potential. Most of these toxins, however, have not been characterized in detail. Here, by combining patch clamp electrophysiology and radioligand binding studies with peptide mutagenesis, NMR structure determination, and molecular modeling, we have revealed key molecular determinants of the interaction between the tarantula toxin huwentoxin-IV and two VGSC isoforms, Nav1.7 and Nav1.2. Nine huwentoxin-IV residues (F6A, P11A, D14A, L22A, S25A, W30A, K32A, Y33A, and I35A) were important for block of Nav1.7 and Nav1.2. Importantly, molecular dynamics simulations and NMR studies indicated that folding was normal for several key mutants, suggesting that these amino acids probably make specific interactions with sodium channel residues. Additionally, we identified several amino acids (F6A, K18A, R26A, and K27A) that are involved in isoform-specific VGSC interactions. Our structural and functional data were used to model the docking of huwentoxin-IV into the domain II voltage sensor of Nav1.7. The model predicts that a hydrophobic patch composed of Trp-30 and Phe-6, along with the basic Lys-32 residue, docks into a groove formed by the Nav1.7 S1-S2 and S3-S4 loops. These results provide new insight into the structural and molecular basis of sodium channel block by huwentoxin-IV and may provide a basis for the rational design of toxin-based peptides with improved VGSC potency and/or selectivity.


Subject(s)
Ion Channel Gating , Sodium Channel Blockers/pharmacology , Spider Venoms/chemistry , Amino Acid Sequence , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Molecular Sequence Data , Radioligand Assay , Sequence Homology, Amino Acid , Spider Venoms/pharmacology , Structure-Activity Relationship
19.
ACS Med Chem Lett ; 4(4): 419-22, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-24900687

ABSTRACT

The synthesis and preclinical characterization of two novel, brain penetrating P2X7 compounds will be described. Both compounds are shown to be high potency P2X7 antagonists in human, rat, and mouse cell lines and both were shown to have high brain concentrations and robust receptor occupancy in rat. Compound 7 is of particular interest as a probe compound for the preclinical assessment of P2X7 blockade in animal models of neuro-inflammation.

20.
Bioorg Med Chem Lett ; 21(18): 5197-201, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21824780

ABSTRACT

The discovery of a series of novel, potent, and selective blockers of the cyclic nucleotide-modulated channel HCN1 is disclosed. Here we report an SAR study around a series of selective blockers of the HCN1 channel. Utilization of a high-throughput VIPR assay led to the identification of a novel series of 2,2-disubstituted indane derivatives, which had moderate selectivity and potency at HCN1. Optimization of this hit led to the identification of the potent, 1,1-disubstituted cyclohexane HCN1 blocker, 2-ethoxy-N-((1-(4-isopropylpiperazin-1-yl)cyclohexyl)methyl)benzamide. The work leading to the discovery of this compound is described herein.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/antagonists & inhibitors , Drug Discovery , Indans/pharmacology , Animals , Cyclic Nucleotide-Gated Cation Channels/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Indans/chemical synthesis , Indans/chemistry , Mice , Molecular Structure , Potassium Channels/metabolism , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...