Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 194: 1-10, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33581173

ABSTRACT

A variety of opossum species are resistant to snake venoms due to the presence of antihemorrhagic and antimyotoxic acidic serum glycoproteins that inhibit several toxic venom components. Two virtually identical antihemorrhagic proteins isolated from either the North American opossum (D. virginiana) or the South American big-eared opossum (D. aurita), termed oprin or DM43 respectively, inhibit specific snake venom metalloproteinases (SVMPs). A better understanding of the structure of these proteins may provide useful insight to determine their mechanism of action and for the development of therapeutics against the global health concern of snake-bite envenomation. The aim of this work is to produce a recombinant snake venom metalloproteinase inhibitor (SVMPI) similar to the above opossum proteins in Escherichia coli and determine if this bacterially produced protein inhibits the proteolytic properties of Western Diamondback rattlesnake (C. atrox) venom. The resulting heterologous SVMPI was produced with either a 6-Histidine or maltose binding protein (MBP) affinity tag on either the C-terminus or N-terminus of the protein, respectively. The presence of the solubility enhancing MBP affinity tag resulted in significantly more soluble protein expression. The inhibitory activity was measured using two complementary assays and the MBP labeled SVMPI showed 7-fold less activity as compared to the 6-Histidine labeled SVMPI. Thus, the bacterially derived SVMPI with an unlabeled N-terminus showed high inhibitory activity (IC50 = 4.5 µM). The use of a solubility enhancing MBP fusion protein construct appears to be a productive way to express sufficient quantities of this mammalian protein in E. coli for further study.


Subject(s)
Crotalid Venoms , Didelphis , Metalloproteases/metabolism , Animals , Escherichia coli , Snake Venoms
2.
Drug Discov Today ; 22(4): 665-680, 2017 04.
Article in English | MEDLINE | ID: mdl-28017836

ABSTRACT

The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Drug Delivery Systems/methods , Humans , Micelles
SELECTION OF CITATIONS
SEARCH DETAIL
...