Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(23): 38049-38063, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017922

ABSTRACT

Statistical probability distributions characterizing received optical power fluctuations, or scintillation, enable performance predictions of space-to-ground optical communication systems. In this paper, we present measurements of stellar scintillation over a wide range of elevation angles and turbulence conditions collected simultaneously with a 5 cm and 40 cm telescope aperture, which allows a comparison between minimal and significant aperture averaging conditions. The measured data is compared to a reasonable set of candidate probability distribution functions (PDFs), including lognormal, which is most often cited in the literature for weak to moderate scintillation. For scintillation indices (SIs) less than about 0.2, the Nakagami-m distribution provides the best representation of the collected data for both apertures and imposes a greater lasercom link penalty than a lognormal distribution, which has been inaccurately implemented as the default probability distribution in the literature. For larger values of the SI, the scintillation is best characterized by a Gamma-Gamma distribution. Additionally, the measured temporal covariance for weak to moderate scintillation conditions is found to be in reasonably good agreement with theoretical predictions.

2.
Opt Express ; 27(17): 24382-24392, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510327

ABSTRACT

In this article, we present the first demonstration of an optical communications downlink from a low-earth orbiting free-flying CubeSat. Two 1.5U vehicles, AC7-B&C, built under NASA's Optical Communications and Sensors Demonstration (OCSD) program were launched in November 2017 and subsequently placed into a 450-km, 51.6° inc. circular orbit. Pseudorandom data streams using on-off key (OOK) modulation were transmitted from AC-7B to a 40 cm aperture telescope located at sea level in El Segundo, CA. At 200 Mbps, without forward error correction (FEC), we achieved a 115-second link that was ~78% error free, with the remaining portion exhibiting an error rate below 1E-5. At the time of the engagement, the 1064-nm laser transmitter was operating at 2 W (half capacity) with a full width half maximum (FWHM) beam divergence of ~1 mrad, which was approximately double the anticipated pointing accuracy of the vehicle.

SELECTION OF CITATIONS
SEARCH DETAIL
...