Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(38): 11485-11493, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34547203

ABSTRACT

Food matrices consist of many components with different physical and chemical properties that may influence instrumental robustness. The soybean contains fatty coextractives which may have a deleterious effect on the gas chromatography (GC) system. In this study, the efficiencies of PSA, C18OH, C18, silica, aluminum oxide, and Florisil, as dSPE clean-up sorbents, were evaluated by the high-performance liquid chromatography (HPLC) diode-array detector and evaporative light-scattering detector analysis. The dithiocarbamates in soybean samples are determined as CS2 using acidic hydrolysis and isooctane partitioning, followed by GC-PFPD and GC-ITD-MS analyses. The linearity of the analytical curves, the instrument limit of detection matrix effects, the trueness and precision, and the method limit of quantification (LOQ) were assessed in the validation study. Milled soybean was spiked with thiram solution at three concentration levels (corresponding to 0.05, 0.1, and 0.5 mg CS2 kg-1) for recovery determination. Silica appeared to be an effective and cheap sorbent to remove coextracted matrix components without causing any CS2 losses. Recoveries were in the range of 68-91%, with relative standard deviations ≤ 8.7%. The method LOQ was 0.05 mg CS2 kg-1, and both GC-ITD-MS and GC-PFPD systems appeared to be appropriate and complementary to determine dithiocarbamate residues in soybean extracts.


Subject(s)
Fungicides, Industrial , Pesticide Residues , Chromatography, Gas , Chromatography, High Pressure Liquid , Pesticide Residues/analysis , Solid Phase Extraction , Glycine max
2.
J Chromatogr A ; 1216(21): 4539-52, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19375710

ABSTRACT

An acetonitrile-based extraction method for the analysis of 169 pesticides in soya grain, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the positive and negative electrospray ionization (ESI) mode, has been optimized and validated. This method has been compared with our earlier published acetone-based extraction method, as part of a comprehensive study of both extraction methods, in combination with various gas chromatography-(tandem) mass spectrometry [GC-MS(/MS)] and LC-MS/MS techniques, using different detection modes. Linearity of calibration curves, instrument limits of detection (LODs) and matrix effects were evaluated by preparing standards in solvent and in the two soya matrix extracts from acetone and acetonitrile extractions, at seven levels, with six replicate injections per level. Limits of detection were calculated based on practically realized repeatability relative standard deviations (RSDs), rather than based on (extrapolated) signal/noise ratios. Accuracies (as % recoveries), precision (as repeatability of recovery experiments) and method limits of quantification (LOQs) were compared. The acetonitrile method consists of the extraction of a 2-g sample with 20 mL of acetonitrile (containing 1% acetic acid), followed by a partitioning step with magnesium sulphate and a subsequent buffering step with sodium acetate. After mixing an aliquot with methanol, the extract can be injected directly into the LC-MS/MS system, without any cleanup. Cleanup hardly improved selectivity and appeared to have minor changes of the matrix effect, as was earlier noticed for the acetone method. Good linearity of the calibration curves was obtained over the range from 0.1 or 0.25 to 10 ng mL(-1), with r(2)>or=0.99. Instrument LOD values generally varied from 0.1 to 0.25 ng mL(-1), for both methods. Matrix effects were not significant or negligible for nearly all pesticides. Recoveries were in the range 70-120%, with RSD

Subject(s)
Acetone/chemistry , Acetonitriles/chemistry , Chromatography, Liquid/methods , Glycine max/chemistry , Pesticides/analysis , Seeds/chemistry , Tandem Mass Spectrometry/methods , Calibration , Pesticide Residues/analysis , Plant Extracts/chemistry , Reproducibility of Results
3.
J Chromatogr A ; 1142(2): 123-36, 2007 Feb 23.
Article in English | MEDLINE | ID: mdl-17222861

ABSTRACT

Part of a comprehensive study on the comparison of different extraction methods, GC-MS(/MS) and LC-MS/MS detection methods and modes, for the analysis of soya samples is described in this paper. The validation of an acetone-based extraction method for analysis of 169 pesticides in soya, using LC-MS/MS positive and negative electrospray ionisation (ESI) mode, is reported. Samples (5 g) were soaked with 10 g water and subsequently extracted with 100 mL of a mixture of acetone, dichloromethane and light petroleum (1:1:1), in the presence of 15 g anhydrous sodium sulphate. After centrifugation, aliquots of the extract were evaporated and reconstituted in 1.0 mL of methanol, before direct injection of the final extract (corresponding with 0.05 g soya mL(-1)) into the LC-MS/MS system. Linearity, r(2) of calibration curves, instrument limit of detection/quantitation (LOD/LOQ) and matrix effect were evaluated, based on seven concentrations measured in 6-fold. Good linearity (at least r(2)> or =0.99) of the calibration curves was obtained over the range from 0.1 or 0.25 to 10.0 ng mL(-1), corresponding with pesticide concentrations in soya bean extract of 2 or 5-200 microg kg(-1). Instrument LOD values generally were 0.1 or 0.25 ng mL(-1). Matrix effects were negligible for approximately 90% of the pesticides. The accuracy, precision and method LOQ were determined via recovery experiments, spiking soya at 10, 50, 100 microg kg(-1), six replicates per level. In both ESI modes, method LOQ values were mostly 10 or 50 microg kg(-1) and more than 70% of pesticides analysed by each mode met the acceptability criteria of recovery (70-120%) and RSD (< or =20%), at one or more of the three levels studied. A fast, easy and efficient method with acceptable performance was achieved for a difficult matrix as soya, without cleanup.


Subject(s)
Chromatography, Liquid/methods , Glycine max/chemistry , Pesticides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...