Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 140(9): 2322-2336, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050398

ABSTRACT

De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/ß spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/ßII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/ß spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/ß heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/ß spectrin heterodimer formation and/or αII spectrin function.


Subject(s)
Brain Diseases/genetics , Brain/pathology , Carrier Proteins/genetics , Epilepsy/genetics , Microfilament Proteins/genetics , Adolescent , Atrophy/complications , Atrophy/pathology , Brain/abnormalities , Brain Diseases/complications , Carrier Proteins/metabolism , Cells, Cultured , Child , Child, Preschool , Disease Progression , Epilepsy/complications , Female , Fibroblasts/metabolism , Humans , Male , Microfilament Proteins/metabolism , Models, Molecular , Mutation , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Protein Aggregation, Pathological/metabolism , Young Adult
2.
BMC Med Genet ; 17: 27, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27048506

ABSTRACT

BACKGROUND: Larsen syndrome is an autosomal dominant skeletal dysplasia characterized by large joint dislocations and craniofacial dysmorphism. It is caused by missense or small in-frame deletions in the FLNB gene. To further characterize the phenotype and the mutation spectrum of this condition, we investigated seven probands, five sporadic individuals and a mother-son-duo with Larsen syndrome. METHODS: The seven patients from six unrelated families were clinically and radiologically evaluated. All patients were screened for mutations in selected exons and exon-intron boundaries of the FLNB gene by Sanger sequencing. FLNB transcript analysis was carried out in one patient to analyse the effect of the sequence variant on pre-mRNA splicing. RESULTS: All patients exhibited typical facial features and joint dislocations. Contrary to the widely described advanced carpal ossification, we noted delay in two patients. We identified the five novel mutations c.4927G A/p.(Gly1643Ser), c.4876G > T / p.(Gly1626Trp), c.4664G > A / p.(Gly1555Asp), c.2055G > C / p.Gln685delins10 and c.5021C > T / p.(Ala1674Val) as well as a frequently observed mutation in Larsen syndrome [c.5164G > A/p.(Gly1722Ser)] in the hotspot regions. FLNB transcript analysis of the c.2055G > C variant revealed insertion of 27 bp intronic sequence between exon 13 and 14 which gives rise to in-frame deletion of glutamine 685 and insertion of ten novel amino acid residues (p.Gln685delins10). CONCLUSIONS: All seven individuals with Larsen syndrome had a uniform clinical phenotype except for delayed carpal ossification in two of them. Our study reveals five novel FLNB mutations and confirms immunoglobulin-like (Ig) repeats 14 and 15 as major hotspot regions. The p.Gln685delins10 mutation is the first Larsen syndrome-associated alteration located in Ig repeat 5. All mutations reported so far leave the filamin B protein intact in accordance with a gain-of-function effect. Our findings underscore the characteristic clinical picture of FLNB-associated Larsen syndrome and add Ig repeat 5 to the filamin B domains affected by the clustered mutations.


Subject(s)
Genetic Heterogeneity , Genotype , Phenotype , Adult , Alleles , Child , Child, Preschool , Exons , Female , Filamins/genetics , Humans , Male , Osteochondrodysplasias/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Sequence Deletion
3.
Neurology ; 82(22): 1999-2002, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24808016

ABSTRACT

OBJECTIVE: We screened a large series of individuals with congenital mirror movements (CMM) for mutations in the 2 identified causative genes, DCC and RAD51. METHODS: We studied 6 familial and 20 simplex CMM cases. Each patient had a standardized neurologic assessment. Analysis of DCC and RAD51 coding regions included Sanger sequencing and a quantitative method allowing detection of micro rearrangements. We then compared the frequency of rare variants predicted to be pathogenic by either the PolyPhen-2 or the SIFT algorithm in our population and in the 4,300 controls of European origin on the Exome Variant Server. RESULTS: We found 3 novel truncating mutations of DCC that segregate with CMM in 4 of the 6 families. Among the 20 simplex cases, we found one exonic deletion of DCC, one DCC mutation leading to a frameshift, 5 missense variants in DCC, and 2 missense variants in RAD51. All 7 missense variants were predicted to be pathogenic by one or both algorithms. Statistical analysis showed that the frequency of variants predicted to be deleterious was significantly different between patients and controls (p < 0.001 for both RAD51 and DCC). CONCLUSION: Mutations and variants in DCC and RAD51 are strongly associated with CMM, but additional genes causing CMM remain to be discovered.


Subject(s)
Carrier Proteins/genetics , Movement Disorders/genetics , Mutation/genetics , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/genetics , Codon, Nonsense , DCC Receptor , DNA Mutational Analysis , Humans , Mutation, Missense , Pedigree , Severity of Illness Index
4.
Am J Med Genet A ; 158A(1): 229-35, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22140031

ABSTRACT

Interstitial deletions of the proximal chromosome 16q are rare. To date, only six cases with molecularly well-characterized microdeletions within this chromosomal region have been described. We report on a patient with severe psychomotor delay, dysmorphic features, microcephaly and hypoplasia of the corpus callosum, epilepsy, a heart defect, and pronounced muscular hypotonia. Array comparative genomic hybridization (aCGH) revealed that the patient's features were likely caused by a 4.7 Mb de novo deletion on chromosome 16q12.1q12.2, which was confirmed by quantitative real-time PCR (qPCR). The psychomotor delay and craniofacial dysmorphism are more severe in our patient than previously reported patients. Unmasked recessive mutations in the ZNF423 and FTO genes on the remaining allele were excluded as the putative cause for this severe phenotype. In conclusion, the phenotypic spectrum of microdeletions in 16q12 is broad and comprises variable degrees of psychomotor delay and intellectual disability, craniofacial anomalies, and additional features, including heart defects, brain malformations, and limb anomalies.


Subject(s)
Brain/abnormalities , Chromosome Deletion , Craniofacial Abnormalities/genetics , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Limb Deformities, Congenital/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Extremities/anatomy & histology , Humans , Infant , Male , Microcephaly/genetics , Muscle Hypotonia/genetics , Phenotype , Proteins/genetics , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...