Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Exp Physiol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014554

ABSTRACT

While it is well-established that a period of interval training performed at near maximal effort, such as speed endurance training (SET), enhances intense exercise performance in well-trained individuals, less is known about its effect on cardiac morphology and function as well as blood volume. To investigate this, we subjected 12 Under-20 Danish national team ice hockey players (age 18 ± 1 years, mean ± SD) to 4 weeks of SET, consisting of 6-10 × 20 s skating bouts at maximal effort interspersed by 2 min of recovery conducted three times weekly. This was followed by 4 weeks of regular training (follow-up). We assessed resting cardiac function and dimensions using transthoracic echocardiography and quantified total blood volume with the carbon monoxide rebreathing technique at three time points: before SET, after SET and after the follow-up period. After SET, stroke volume had increased by 10 (2-18) mL (mean (95% CI)), left atrial end-diastolic volume by 10 (3-17) mL, and circumferential strain improved by 0.9%-points (1.7-0.1) (all P < 0.05). At follow-up, circumferential strain and left atrial end-diastolic volume were reverted to baseline levels, while stroke volume remained elevated. Blood volume and morphological parameters for the left ventricle, including mass and end-diastolic volume, did not change during the study. In conclusion, our findings demonstrate that a brief period of SET elicits beneficial central cardiac adaptations in elite ice hockey players independent of changes in blood volume.

2.
Med Sci Sports Exerc ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650113

ABSTRACT

PURPOSE: We investigated the effects of low and high volume speed endurance training (SET), with a reduced training volume, on sprint ability, short- and long-term exercise capacity, muscle mitochondrial properties, ion transport proteins and maximal enzyme activity in highly trained athletes. METHODS: Highly-trained male cyclists (V̇O2max: 68.3 ± 5.0 mL × min-1 × kg-1, n = 24) completed six weeks of either low (SET-L; 6x30-s intervals, n = 8) or high (SET-H; 12 × 30-s intervals, n = 8) volume SET twice per week with a 30%-reduction in training volume. A control group (CON, n = 8) maintained their training. Exercise performance was evaluated by i) 6-s sprinting, ii) a 4-min time trial, iii) a 60-min preload at 60% V̇O2max followed by a 20-min time trial. A biopsy of m. vastus lateralis was collected before and after the training intervention. RESULTS: In SET-L, 4-min time trial performance was improved (P < 0.05) by 3.8%, with no change in SET-H and CON. Sprint ability, prolonged endurance exercise capacity, V̇O2max, muscle mitochondrial respiratory capacity, maximal citrate synthase activity, fiber-type specific mitochondrial proteins (complex I - V) and PFK content did not change in any of the groups. In SET-H, maximal activity of muscle PFK and abundance of Na+-K+ pump-subunit α1, α2, ß1, and phospholemman (FXYD1) were 20%, 50%, 19%, 24%, and 42 % higher (P < 0.05), respectively after compared to before the intervention, with no changes in SET-L or CON. CONCLUSIONS: Low SET volume combined with a reduced aerobic low and moderate intensity training volume does improve short duration intense exercise performance and maintain sprinting ability, V̇O2max, endurance exercise performance and muscle oxidative capacity, whereas, high volume of SET appears necessary to upregulate muscle ion transporter content and maximal PFK activity in highly trained cyclists.

3.
Scand J Med Sci Sports ; 34(1): e14307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36648389

ABSTRACT

Top-class athletes have optimized their athletic performance largely through adequate training, nutrition, recovery, and sleep. A key component of sports nutrition is the utilization of nutritional ergogenic aids, which may provide a small but significant increase in athletic performance. Over the last decade, there has been an exponential increase in the consumption of nutritional ergogenic aids, where over 80% of young athletes report using at least one nutritional ergogenic aid for training and/or competition. Accordingly, due to their extensive use, there is a growing need for strong scientific investigations validating or invalidating the efficacy of novel nutritional ergogenic aids. Notably, an overview of the physiological considerations that play key roles in determining ergogenic efficacy is currently lacking. Therefore, in this brief review, we discuss important physiological considerations that contribute to ergogenic efficacy for nutritional ergogenic aids that are orally ingested including (1) the impact of first pass metabolism, (2) rises in systemic concentrations, and (3) interactions with the target tissue. In addition, we explore mouth rinsing as an alternate route of ergogenic efficacy that bypasses the physiological hurdles of first pass metabolism via direct stimulation of the central nervous system. Moreover, we provide real-world examples and discuss several practical factors that can alter the efficacy of nutritional ergogenic aids including human variability, dosing protocols, training status, sex differences, and the placebo effect. Taking these physiological considerations into account will strengthen the quality and impact of the literature regarding the efficacy of potential ergogenic aids for top-class athletes.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Humans , Female , Male , Dietary Supplements , Athletes , Performance-Enhancing Substances/pharmacology
4.
Temperature (Austin) ; 10(2): 240-247, 2023.
Article in English | MEDLINE | ID: mdl-37332307

ABSTRACT

The fingers have a large surface area to volume ratio (SA:V), minimal muscle mass, and potent vasoconstrictor capacity. These qualities make the fingers prone to heat loss and freezing injuries during whole-body or local cold exposure. Anthropologists have proposed that the large inter-individual variability in human finger anthropometrics may be an ecogeographic evolutionary adaptation, where shorter and thicker digits (i.e. smaller SA:V ratio) provide a favorable adaptation for cold climate natives. We hypothesized that the SA:V ratio of a digit has an inverse relationship with finger blood flux and finger temperature (Tfinger) during cooling and rewarming from cold. Fifteen healthy adults with no or limited cold experiment experience performed 10 min of baseline immersion in warm water (35.0 ± 0.1°C), 30 min in cold water (8.4 ± 0.2°C), and a final 10 min of rewarming in ambient air (~22°C, ~40% relative humidity). Tfinger and finger blood flux were measured continuously across multiple digits per participant. Average Tfinger (p = 0.05; R2 = 0.06) and area under the curve for Tfinger (p = 0.05; R2 = 0.07) during hand cooling showed significant, negative correlations to digit SA:V ratio. There was no relationship between digit SA:V ratio and blood flux (i.e. average blood flux and AUC) during cooling as well as between SA:V ratio and digit temperature (i.e. average Tfinger and AUC) or blood flux (i.e. average blood flux and AUC) during rewarming. Overall, digit anthropometrics do not appear to play a dominant role in extremity cold response.

5.
Biomolecules ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291709

ABSTRACT

The risk of thrombotic events dramatically increases with age and may be accelerated in women by the cessation of endogenous estrogen production at menopause. Patients at risk of thrombosis are prescribed dual anti-platelet therapy (DAPT; aspirin and a P2Y12 antagonist) and are encouraged to participate in regular physical activity, as these modalities improve nitric oxide and prostacyclin-mediated inhibition of platelet aggregation. METHODS: We assessed prostacyclin sensitivity as well as basal platelet reactivity with and without in vitro DAPT before and after an 8-week high-intensity exercise training program in 13 healthy, sedentary postmenopausal women. The training intervention consisted of three 1 h sessions per week. Isolated platelets were analyzed for thromboxane A2 receptor, thromboxane A2 synthase, cyclooxygenase-1, and prostacyclin receptor protein expression. Additionally, plasma 6-keto prostaglandin F1α and thromboxane B2 levels were determined. RESULTS: Exercise training made platelets more sensitive to the inhibitory effects of prostacyclin on thromboxane-, collagen-, and adenosine 5'-diphosphate (ADP)-induced aggregation, as well as thrombin-receptor activator peptide 6- and ADP-induced aggregation with DAPT. However, there was no change in protein expression from isolated platelets or plasma thromboxane B2 and prostacyclin levels following training. CONCLUSION: Together, these findings emphasize the importance of promoting physical activity as a tool for reducing thrombotic risk in postmenopausal women and suggest that training status should be considered when prescribing DAPT in this cohort.


Subject(s)
Epoprostenol , Thrombosis , Humans , Female , Epoprostenol/pharmacology , Cyclooxygenase 1 , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Dual Anti-Platelet Therapy , Nitric Oxide/pharmacology , Thrombin , Postmenopause , Diphosphates , Receptors, Epoprostenol , Aspirin/pharmacology , Aspirin/therapeutic use , Thromboxanes , Adenosine Diphosphate , Exercise , Receptors, Thromboxane , Estrogens , Adenosine , Peptides
6.
Front Cardiovasc Med ; 9: 826959, 2022.
Article in English | MEDLINE | ID: mdl-35224058

ABSTRACT

The decline in estrogen at menopause poses a critical challenge to cardiovascular and metabolic health. Recently, a growing interest in the role of phytoestrogens, with a particular focus on isoflavones, has emerged as they can bind to estrogen receptors and may mimic the roles of endogenous estrogen. Fermented red clover extract (RC) contains isoflavones with superior bioavailability compared to non-fermented isoflavones, however little is known regarding the impact of isoflavones on cardiovascular and metabolic health. We assessed markers of vascular health in plasma and skeletal muscle samples obtained from healthy but sedentary early post-menopausal women (n = 10; 54 ± 4 years) following 2 weeks of twice daily treatment with placebo (PLA) or RC (60 mg isoflavones per day). The two interventions were administered using a randomized, double-blind, crossover design with a two-week washout period. Plasma samples were utilized for assessment of markers of vascular inflammation. There was a statistically significant reduction (~5.4%) in vascular cell adhesion molecule 1 (VCAM-1) following 2 weeks of RC supplementation compared to PLA (p = 0.03). In contrast, there was no effect of RC supplementation compared to PLA on skeletal muscle estrogen receptor content and enzymes related to vascular function, and angiogenesis. Supplementation with RC reduces vascular inflammation in early post-menopausal women and future studies should address the long-term impact of daily supplementation with RC after menopause.

7.
Free Radic Biol Med ; 179: 144-155, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34954023

ABSTRACT

Aerobic training can improve vascular endothelial function in-vivo. The aim of this study was to elucidate the mechanisms underlying this improvement in isolated human microvascular endothelial cells. Sedentary males, aged 57 ± 6 years completed 8 weeks of intense aerobic training. Resting muscle biopsies were obtained from the thigh muscle and used for isolation of endothelial cells (pre n = 23, post n = 16). The cells were analyzed for mitochondrial respiration, H2O2 emission, glycolysis, protein levels of antioxidants, NADPH oxidase, endothelial nitric oxide (NO) synthase and prostacyclin synthase (PGI2S). In-vivo microvascular function, assessed by acetylcholine infusion and arterial blood pressure were also determined. Endothelial mitochondrial respiration and H2O2 formation were similar before and after training whereas the expression of superoxide dismutase and the expression of glutathione peroxidase were 2.4-fold (p = 0.012) and 2.3-fold (p = 0.006) higher, respectively, after training. In-vivo microvascular function was increased by 1.4-fold (p = 0.036) in parallel with a 2.1-fold increase in endothelial PGI2S expression (p = 0.041). Endothelial cell glycolysis was reduced after training, as indicated by a 65% lower basal production of lactate (p = 0.003) and a 30% lower expression of phosphofructokinase (p = 0.011). Subdivision of the participants according to blood pressure at base-line (n = 23), revealed a 2-fold higher (p = 0.049) rate of H2O2 production in endothelial cells from hypertensive participants. Our data show that exercise training increases skeletal muscle microvascular endothelial cell metabolism, antioxidant capacity and the capacity to form prostacyclin. Moreover, elevated blood pressure is associated with increased endothelial mitochondrial ROS formation.


Subject(s)
Endothelial Cells , Hydrogen Peroxide , Exercise , Humans , Hydrogen Peroxide/metabolism , Male , Muscle, Skeletal/metabolism , Oxidation-Reduction
8.
Eur J Appl Physiol ; 121(2): 353-367, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33205218

ABSTRACT

Over the last few decades, females have significantly increased their participation in athletic competitions and occupations (e.g. military, firefighters) in hot and thermally challenging environments. Heat acclimation, which involves repeated passive or active heat exposures that lead to physiological adaptations, is a tool commonly used to optimize performance in the heat. However, the scientific community's understanding of adaptations to heat acclimation are largely based on male data, complicating the generalizability to female populations. Though limited, current evidence suggests that females may require a greater number of heat acclimation sessions or greater thermal stress to achieve the same magnitude of physiological adaptations as males. The underlying mechanisms explaining the temporal sex differences in the physiological adaptations to heat acclimation are currently unclear. Therefore, the aims of this state-of-the-art review are to: (i) present a brief yet comprehensive synthesis of the current female and sex difference literature, (ii) highlight sex-dependent (e.g. anthropometric, menstrual cycle) and sex-independent factors (e.g. environmental conditions, fitness) influencing the physiological and performance adaptations to heat acclimation, and (iii) address key avenues for future research.


Subject(s)
Acclimatization/physiology , Adaptation, Physiological/physiology , Animals , Hot Temperature , Humans , Sex Characteristics
9.
Physiol Rep ; 8(9): e14408, 2020 05.
Article in English | MEDLINE | ID: mdl-32342642

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na+ /K+ ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) activity by inducing a Ca2+ leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Fish Oils/administration & dosage , Muscle, Skeletal/physiology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Age Factors , Aged , Basal Metabolism , Energy Metabolism , Female , Humans , Male , Muscle, Skeletal/drug effects , Olive Oil/administration & dosage , Oxidation-Reduction
10.
Int J Sports Physiol Perform ; 15(6): 833-840, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32101792

ABSTRACT

During play, ice hockey goaltenders routinely dehydrate through sweating and lose ≥2% body mass, which may impair thermoregulation and performance. PURPOSE: This randomized, crossover study examined the effects of mild dehydration on goaltender on-ice thermoregulation, heart rate, fatigue, and performance. METHODS: Eleven goaltenders played a 70-minute scrimmage followed by a shootout and drills to analyze reaction time and movements. On ice, they either consumed no fluid (NF) and lost 2.4% (0.3%) body mass or maintained body mass with water (WAT) or a carbohydrate-electrolyte solution (CES). Save percentage, rating of perceived exertion, heart rate, and core temperature were recorded throughout, and a postskate questionnaire assessed perceived fatigue. RESULTS: Relative to NF, intake of both fluids decreased heart rate (interaction: P = .03), core temperature (peak NF = 39.0°C [0.1°C], WAT = 38.6°C [0.1°C], and CES = 38.5°C [0.1°C]; P = .005), and rating of perceived exertion in the scrimmage (post hoc: P < .04), as well as increasing save percentage in the final 10 minutes of scrimmage (NF = 75.8% [1.9%], WAT = 81.7% [2.3%], and CES = 81.3% [2.3%], post hoc: P < .04). In drills, movement speed (post hoc: P < .05) and reaction time (post hoc: P < .04) were slower in the NF versus both fluid conditions. Intake of either fluid similarly reduced postskate questionnaire scores (condition: P < .0001). Only CES significantly reduced rating of perceived exertion in drills (post hoc: P < .05) and increased peak movement power versus NF (post hoc: P = .02). Shootout save percentage was similar between conditions (P = .37). CONCLUSIONS: Mild dehydration increased physiological strain and fatigue and decreased ice hockey goaltender performance versus maintaining hydration. Also, maintaining hydration with a CES versus WAT may further reduce perceived fatigue and positively affect movements.


Subject(s)
Athletic Performance/physiology , Body Temperature Regulation/physiology , Dehydration/physiopathology , Hockey/physiology , Body Mass Index , Cross-Over Studies , Heart Rate/physiology , Humans , Male , Motor Skills/physiology , Muscle Fatigue/physiology , Perception/physiology , Physical Exertion/physiology , Sweating/physiology
13.
Appl Physiol Nutr Metab ; 44(9): 915-924, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31348674

ABSTRACT

Over the last decade there has been substantial interest in the health and athletic performance benefits associated with acute and chronic dietary nitrate (NO3-) supplementation. Dietary NO3-, commonly found in leafy green and root vegetables, undergoes sequential reduction to nitrite and nitric oxide (NO) via the enterosalivary circulation. Importantly, NO has been shown to elicit a number of biological effects ranging from blood pressure reduction to improved exercise economy and athletic performance. However, a common absence within biological research is the lack of female participants, which is often attributed to the added complexity of hormonal fluctuations throughout the menstrual cycle. Despite mounting evidence supporting significant anthropometric, metabolic, and physiological differences between the sexes, this problem extends to the field of dietary NO3- supplementation where women are underrepresented as research participants. This review examines the existing dietary NO3- supplementation research with regards to dietary NO3- pharmacokinetics, resting blood pressure, exercise economy and performance, and mechanisms of action. It also provides evidence and rationale for potential sex differences in response to dietary NO3- supplementation and future directions for this field of research. Novelty Dietary NO3- supplementation has been shown to have positive impacts on health and athletic performance in generally male populations. However, women are underrepresented in dietary NO3- supplementation research. The present evidence suggests that sex differences exist in response to dietary NO3- supplementation and this review highlights avenues for future research.


Subject(s)
Dietary Supplements , Nitrates/administration & dosage , Nitrates/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Male , Nitric Oxide/pharmacology , Sex Characteristics
14.
Physiol Rep ; 7(2): e13982, 2019 01.
Article in English | MEDLINE | ID: mdl-30653856

ABSTRACT

This study investigated the effects of acute and chronic beetroot juice (BRJ) supplementation on submaximal exercise oxygen uptake (VO2 ), time trial (TT) performance, and contractile properties of the plantar flexors in females. Study 1: Using a double blind, randomized, crossover design, 12 recreationally active females using hormonal contraceptives supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d (~26 mmoles nitrate [ NO3- ]) or a NO3- -free placebo (PLA). On days 1 and 8, participants cycled for 10 min at 50% and 70% VO2peak and completed a 4 kJ/kg body mass TT. Plasma [ NO3- ] and nitrite ([NO2- ]) increased significantly following BRJ supplementation versus PLA. There was no effect of BRJ supplementation on VO2 at 50% or 70% VO2peak , or TT performance. Study 2: 12 recreationally active females (n = 7 from Study 1) using hormonal contraceptives participated in a baseline visit and were supplemented acutely (2.5 h) and chronically (8 days) with 280 mL BRJ/d. Maximum voluntary strength (MVC) of the plantar flexors was assessed and a torque-frequency curve performed. BRJ had no effect on MVC, voluntary activation, peak twitch torque, time to peak torque, or half relaxation time. Following both acute (46.6 ± 4.9% of 100 Hz torque) and chronic (47.2 ± 4.4%) supplementation, 10 Hz torque was significantly greater compared to baseline (32.9 ± 2.6%). In summary, BRJ may not be an effective ergogenic aid in recreationally active females as it did not reduce submaximal exercise VO2 or improve aerobic TT performance despite increasing low frequency torque production.


Subject(s)
Antioxidants/pharmacology , Athletic Performance/physiology , Beta vulgaris/chemistry , Exercise/physiology , Fruit and Vegetable Juices , Muscle, Skeletal/drug effects , Oxygen Consumption/drug effects , Adult , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Young Adult
15.
Sports Med ; 48(Suppl 1): 79-91, 2018 03.
Article in English | MEDLINE | ID: mdl-29368182

ABSTRACT

There has been recent interest in the ergogenic effects of caffeine delivered in low doses (~ 200 mg or ~ 3 mg/kg body mass) and administered in forms other than capsules, coffee and sports drinks, including chewing gum, bars, gels, mouth rinses, energy drinks and aerosols. Caffeinated chewing gum is absorbed quicker through the buccal mucosa compared with capsule delivery and absorption in the gut, although total caffeine absorption over time is not different. Rapid absorption may be important in many sporting situations. Caffeinated chewing gum improved endurance cycling performance, and there is limited evidence that repeated sprint cycling and power production may also be improved. Mouth rinsing with caffeine may stimulate nerves with direct links to the brain, in addition to caffeine absorption in the mouth. However, caffeine mouth rinsing has not been shown to have significant effects on cognitive performance. Delivering caffeine with mouth rinsing improved short-duration, high-intensity, repeated sprinting in normal and depleted glycogen states, while the majority of the literature indicates no ergogenic effect on aerobic exercise performance, and resistance exercise has not been adequately studied. Studies with caffeinated energy drinks have generally not examined the individual effects of caffeine on performance, making conclusions about this form of caffeine delivery impossible. Caffeinated aerosol mouth and nasal sprays may stimulate nerves with direct brain connections and enter the blood via mucosal and pulmonary absorption, although little support exists for caffeine delivered in this manner. Overall, more research is needed examining alternate forms of caffeine delivery including direct measures of brain activation and entry of caffeine into the blood, as well as more studies examining trained athletes and female subjects.


Subject(s)
Athletic Performance/physiology , Caffeine/administration & dosage , Caffeine/pharmacology , Central Nervous System Stimulants/administration & dosage , Chewing Gum , Mouthwashes/chemistry , Athletes , Bicycling , Female , Humans , Mouthwashes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...