Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 291(30): 15687-99, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27231342

ABSTRACT

α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the ß-catenin·cadherin complex, whereas the homodimer does not bind ß-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The ß-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the ß-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks ß-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cadherins/metabolism , Hypertrophy, Right Ventricular/metabolism , Multiprotein Complexes/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , alpha Catenin/metabolism , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Actins/chemistry , Actins/genetics , Animals , Cadherins/chemistry , Cadherins/genetics , Hypertrophy, Right Ventricular/genetics , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Myocardium/pathology , Myocytes, Cardiac/pathology , Protein Binding , alpha Catenin/chemistry , alpha Catenin/genetics
2.
Hepatology ; 54(4): 1333-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21721031

ABSTRACT

UNLABELLED: Prolonged exposure of mice to diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) results in hepatobiliary injury, atypical ductular proliferation, oval cell appearance, and limited fibrosis. Previously, we reported that short-term ingestion of DDC diet by hepatocyte-specific ß-catenin conditional knockout (KO) mice led to fewer A6-positive oval cells than wildtype (WT) littermates. To examine the role of ß-catenin in chronic hepatic injury and repair, we exposed WT and KO mice to DDC for 80 and 150 days. Paradoxically, long-term DDC exposure led to significantly more A6-positive cells, indicating greater atypical ductular proliferation in KO, which coincided with increased fibrosis and cholestasis. Surprisingly, at 80 and 150 days in KO we observed a significant amelioration of hepatocyte injury. This coincided with extensive repopulation of ß-catenin null livers with ß-catenin-positive hepatocytes at 150 days, which was preceded by appearance of ß-catenin-positive hepatocyte clusters at 80 days and a few ß-catenin-positive hepatocytes at earlier times. Intriguingly, occasional ß-catenin-positive hepatocytes that were negative for progenitor markers were also observed at baseline in the KO livers, suggesting spontaneous escape from cre-mediated recombination. These cells with hepatocyte morphology expressed mature hepatocyte markers but lacked markers of hepatic progenitors. The gradual repopulation of KO livers with ß-catenin-positive hepatocytes occurred only following DDC injury and coincided with a progressive loss of hepatic cre-recombinase expression. A few ß-catenin-positive cholangiocytes were observed albeit only after long-term DDC exposure and trailed the appearance of ß-catenin-positive hepatocytes. CONCLUSION: In a chronic liver injury model, ß-catenin-positive hepatocytes exhibit growth and survival advantages and repopulate KO livers, eventually limiting hepatic injury and dysfunction despite increased fibrosis and intrahepatic cholestasis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic/pathology , Hepatocytes/drug effects , Pyridines/pharmacology , beta Catenin/metabolism , Animals , Blotting, Western , Cells, Cultured , Chronic Disease , Disease Models, Animal , Hepatocytes/pathology , Immunohistochemistry , Liver Function Tests , Liver Regeneration/physiology , Mice , Mice, Knockout , Random Allocation , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...