Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 1): 041605, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16383394

ABSTRACT

Calcite crystals often nucleate and grow in solutions of calcium carbonate, and these crystallites can become trapped at the air water interface, where they form unusual structures. The most common is a fractal structure, which can extend over a large fraction of the interface, and whose origin is understood in terms of the aggregation of the particles. Much more rarely, a different and entirely unexpected structure is observed: the particles remain well separated on the interface, forming an ordered phase reminiscent of a two-dimensional colloidal crystal. The structure of the crystallites that form this ordered phase is always observed to be tetrahedral, in contrast to the much more common rhombohedral structure of the crystallites that form the fractal phase. We show that the interparticle interaction potential that leads to this ordered phase is a balance between a long-range attractive interaction and a long-range repulsive interaction. The attraction results from gravity-induced capillary forces, while the repulsion results from a dipole-dipole interaction due to the charged surface of the tetrahedral crystals. The interaction potential is estimated from the thermal motion of the particles, and fits to the theoretically expected values suggest that the effective surface charge on the tetrahedral crystals is sigma approximately 0.01 charges/nm2.

2.
Biotechnol Bioeng ; 42(2): 167-77, 1993 Jun 20.
Article in English | MEDLINE | ID: mdl-18612977

ABSTRACT

The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface.

3.
Biophys J ; 49(3): 597-605, 1986 Mar.
Article in English | MEDLINE | ID: mdl-3697473

ABSTRACT

Structures of lamellar phases in aqueous dispersions of diisoacylphosphatidylcholines (17iPC and 20iPC) were determined by x-ray diffraction methods. In agreement with previous DSC studies, subgel, gel, and liquid crystal phases were observed in each homolog. The subgel Lc(c') phases of both homologs show significant two-dimensional long range order and can be described by rectangular lattices. The dimensions of the two rectangular unit cells differ in that the side chains are canted (approximately 33 degrees) in the 20iPC homolog, while in 17iPC the side chains are normal to the bilayer plane. The gel L beta phases of 17iPC (Tgg = 17-19.5 degrees C) and 20iPC (Tgg = 44 degrees C) are similar but not identical and are consistent with a distorted, pseudohexagonal lattice for the rotationally disordered side chains. The liquid crystal phases of 17iPC (Tgl = 28 degrees C) and 20iPC (Tgl = 52 degrees C) are structurally similar and are typical of lipids with fluid side chains. Significant but different changes occur in the long spacings at Tgg and Tgl for the two homologs. This implies that interfacial states (particularly in the subgel phases) differ in the two homologs below the liquid crystal phase transition temperature.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Gels , Isomerism , Molecular Conformation , Thermodynamics , X-Ray Diffraction
4.
Chem Phys Lipids ; 35(1): 63-76, 1984 May.
Article in English | MEDLINE | ID: mdl-6547644

ABSTRACT

Hydrated multibilayers of 1-palmitoyl-2-monobromopalmitoyl-sn-glycero-3-phosphorylcholine (BrDPPC), where the 2-chain is brominated at either the C-9 or C-10 position, have been studied by low and wide angle X-ray diffraction methods. Oriented and unoriented samples were investigated. The long spacing was observed over the temperature interval -15 degrees C to 80 degrees C. A monotonic increase from approx. 50 A to approx. 62 A (28 wt. % H2O) occurred with decreasing temperature. The BrDPPC showed no evidence of a sharp gel-to-liquid crystal phase transition. Wide angle scattering showed a diffuse peak corresponding to (4.5 A)-1. Differential scanning calorimetry measurements for hydrated liposomes (50 wt. % H2O) also showed no evidence for a phase transition (-40 less than or equal to T less than or equal to 60 degrees C). These results suggest a low temperature amorphous (glass) state for the acyl side chains of BrDPPC. Monolayer film properties of monobrominated stearic acid also reflect a chain disordering effect occurring upon midchain substitution.


Subject(s)
Pulmonary Surfactants , Chemical Phenomena , Chemistry , Temperature , X-Ray Diffraction
5.
Lipids ; 13(1): 85-7, 1978 Jan.
Article in English | MEDLINE | ID: mdl-27519999

ABSTRACT

The synthesis of 1-palmitoyl-2-monobromopalmitoyl lecithin, where the ß-chain is brominated in either the 9- or 10-position, is reported, Monobromopalmitic acid was prepared by addition of HBr to palmitoleic acid, and the anhydride of the fatty acid conjugated with 1-palmitoyl lysolecithin. The resulting lecithin was isolated by preparative thin layer chromatography and its structure confirmed by chemical and enzymatic analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...