Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(3): e92383, 2014.
Article in English | MEDLINE | ID: mdl-24671019

ABSTRACT

This study focuses on quantifying hydrodynamic trails produced by freely swimming zooplankton. We combined volumetric tracking of swimming trajectories with planar observations of the flow field induced by Daphnia of different size and swimming in different patterns. Spatial extension of the planar flow field along the trajectories was used to interrogate the dimensions (length and volume) and energetics (dissipation rate of kinetic energy and total dissipated power) of the trails. Our findings demonstrate that neither swimming pattern nor size of the organisms affect the trail width or the dissipation rate. However, we found that the trail volume increases with increasing organism size and swimming velocity, more precisely the trail volume is proportional to the third power of Reynolds number. This increase furthermore results in significantly enhanced total dissipated power at higher Reynolds number. The biggest trail volume observed corresponds to about 500 times the body volume of the largest daphnids. Trail-averaged viscous dissipation rate of the swimming daphnids vary in the range of 1.8 x 10(-6) W/kg to 3.4 x 10(-6) W/kg and the observed magnitudes of total dissipated power between 1.3 x 10(-9) W and 1 x 10(-8) W, respectively. Among other zooplankton species, daphnids display the highest total dissipated power in their trails. These findings are discussed in the context of fluid mixing and transport by organisms swimming at intermediate Reynolds numbers.


Subject(s)
Daphnia/physiology , Hydrodynamics , Animals , Biomechanical Phenomena , Swimming , Viscosity , Zooplankton
2.
Med Eng Phys ; 35(9): 1256-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23414917

ABSTRACT

Most medical implants run on batteries, which require costly and tedious replacement or recharging. It is believed that micro-generators utilizing intracorporeal energy could solve these problems. However, such generators do not, at this time, meet the energy requirements of medical implants.This paper highlights some essential aspects of designing and implementing a power source that scavenges energy from arterial expansion and contraction to operate an implanted medical device. After evaluating various potentially viable transduction mechanisms, the fabricated prototype employs an electromagnetic transduction mechanism. The artery is inserted into a laboratory-fabricated flexible coil which is permitted to freely deform in a magnetic field. This work also investigates the effects of the arterial wall's material properties on energy harvesting potential. For that purpose, two types of arteries (Penrose X-ray tube, which behave elastically, and an artery of a Göttinger minipig, which behaves viscoelastically) were tested. No noticeable difference could be observed between these two cases. For the pig artery, average harvestable power was 42 nW. Moreover, peak power was 2.38 µW. Both values are higher than those of the current state of the art (6 nW/16 nW). A theoretical modelling of the prototype was developed and compared to the experimental results.


Subject(s)
Arteries/physiology , Blood Pressure , Electricity , Equipment and Supplies , Materials Testing/instrumentation , Elasticity , Equipment Design , Magnetic Fields , Vasoconstriction , Vasodilation , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...