Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36231148

ABSTRACT

As in many other parts of the world, the urban areas of the South Asian region are increasingly expanding. While cities today are the heart of commercial, technological and social development, they are also vulnerable to a variety of natural and anthropogenic threats. The complex urban infrastructure, and the ever-expanding population in cities, exacerbate the impacts of climate change and increase the risk of natural hazards. Throughout history, various hydrological disasters including floods, tidal surges, and droughts, and non-hydrological disasters such as earthquakes, landslides, and storms have led to catastrophic social, economic and environmental impacts in numerous South Asian cities. Disaster risk reduction is therefore central to ensure sustainability in urban areas. Although Nature-based Solutions (NbS) are identified as a promising strategy to reduce risk and increase resilience, there appears to be a lack of evidence-based approaches. NbS are measures that can be practiced to obtain benefits of nature for the environmental and community development through conserving, managing, and restoring ecosystems. Against this backdrop, the South Asian cities provide opportunities to evaluate capacities for achieving Nature-based Resilience (NbR) through NbS. This study documents insights from five cities of five different countries of the South Asian region which are subjected to a wide array of disasters: Barishal (Bangladesh), Phuentsholing (Bhutan), Gurugram (India), Kathmandu (Nepal), and Colombo (Sri Lanka). The primary objective of this study is to provide evidence on how NbS are being practiced. Thus, some success stories in cities under consideration are highlighted: restoration of natural canals through integrated development plans and community participation (Barishal), concepts of Gross National Happiness (GNH) and minimal nature interventions (Phuentsholing), "Greening cities'' including eco-corridors, vegetation belts, biodiversity parks (Gurugram), proper land use planning aims at different disasters (Kathmandu), and wetland restoration and management with multiple benefits (Colombo). These cases could therefore, act as a "proxy" for learning from each other to prepare for and recover from future disasters while building NbR.


Subject(s)
Disasters , Ecosystem , Cities , Climate Change , Floods , Sri Lanka
2.
Chemosphere ; 277: 130278, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33774248

ABSTRACT

Heavy metal contamination in wetland ecosystems is a serious environmental and health concern. This study evaluated the cytogenotoxicity of a previously evidenced heavy metal contamination (Cd, Cr, Cu, Pb and Zn ∼5 ppm each) in a polluted urban wetland, the Bellanwila-Attidiya sanctuary (BAS) in Sri Lanka, using a battery of cytogenotoxic assays. Micronucleus and comet assays evaluated the genotoxicity in erythrocytes of a common amphibian, the Indian green frog (Euphlyctis hexadactylus), under natural metal exposure in the wetland, and in vitro exposure, respectively.The Allium cepa bioassay assessed the cytogenotoxicity of the heavy metal mixture and of the individual metals, under laboratory exposure. Although in vivo natural exposure showed no significant induction of micronuclei in frog erythrocytes (P > 0.1), a significant and dose dependent elevation of comets was evident with in vitro exposure to the metal mixture (P < 0.001). Field controls did not show significant impacts in the A. cepa bioassay, whereas individual exposure to heavy metals reported lower effects than their combined exposure under laboratory conditions; Pb2+was the most toxic metal, with the highest mitotic inhibition (Pb2+>Cd2+>Zn2+>Cr6 >Cu2+), mutagenic potential as evaluated in the percentage incidence of chromosomal aberrations (Pb2+> Zn2+> Cu2+> Cr6+> Cd2+) and cytotoxicity evaluated by the incidence of cell apoptosis and necrosis (Pb2+>Cr6+>Cu2+>Cd2+>Zn2+). Thus, the test battery of micronucleus, comet and A. cepa assays that reveal differential aspects of cytogenotoxicity may serve as a valuable tool in environmental monitoring, primarily to screen for complex environmental mixtures of heavy metals that may impact ecological health.


Subject(s)
Metals, Heavy , Rana clamitans , Water Pollutants, Chemical , Animals , Biological Assay , Comet Assay , Ecosystem , Environmental Monitoring , Erythrocytes/chemistry , Metals, Heavy/analysis , Metals, Heavy/toxicity , Onions , Risk Assessment , Sri Lanka , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Wetlands
3.
Environ Toxicol Chem ; 36(10): 2855-2867, 2017 10.
Article in English | MEDLINE | ID: mdl-28474750

ABSTRACT

Heavy metal contamination may have adverse effects on wetland biota, particularly on amphibians. Severe immunotoxic effects elicited in Euphlyctis hexadactylus (Indian green frog) because of metal exposure (Cd, Cr, Cu, Pb, and Zn) in the Bellanwila-Attidiya Sanctuary, a polluted urban wetland in Sri Lanka, provided the rationale for the present study. We evaluated the biochemical and histopathological effects of this metal contamination with a reference E. hexadactylus population and a laboratory exposure group that was subjected to 28 d of exposure to a mixture of Cd, Cr, Cu, Pb, and Zn (5 ppm in each mixture). A histopathological scoring for the semiquantification of tissue damage was established. Results of the biochemical and histopathological markers were remarkably consistent between the 2 exposure scenarios, providing validation for the heavy metal exposure hypothesis. Damage to liver, kidney, lung, and skin of metal-exposed E. hexadactylus quantified multiple impairments absent in the reference frogs. Liver injuries complemented significantly elevated aspartate transaminase (AST), alanine transaminase (ALT), γ-glutamyl transferase (γ-GT), and alkaline phosphatases in frog liver homogenate, indicating hepatocellular leakage and loss of functional and structural integrity of the hepatocyte membrane in both field- and laboratory-exposed frogs. Significant elevation of Kupffer cell hypertrophy, pigmentation, inflammatory cell infiltrates and hepatic inflammation, extramedullary hematopoiesis, karyocytomegaly of hepatocytes (p < 0.05) of the liver, and degeneration of epithelia and necrosis of the lung, manifested as impairments in both metal exposure scenarios. Significantly reduced serum total protein and albumin and significantly elevated urea and creatinine in metal-exposed frogs were indicative of hepatic and renal dysfunction, respectively. The present study affirms histopathology-related biochemical alterations as potential biomarkers for heavy metal toxicity in amphibians. Environ Toxicol Chem 2017;36:2855-2867. © 2017 SETAC.


Subject(s)
Liver/drug effects , Metals, Heavy/toxicity , Rana clamitans/metabolism , Water Pollutants, Chemical/toxicity , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Biomarkers/blood , Creatinine/blood , Kidney/drug effects , Kidney/pathology , Liver/enzymology , Liver/pathology , Lung/drug effects , Lung/pathology , Metals, Heavy/chemistry , Skin/drug effects , Skin/pathology , Sri Lanka , Up-Regulation/drug effects , Urea/blood , Water Pollutants, Chemical/chemistry , Wetlands , gamma-Glutamyltransferase/blood
4.
Sci Total Environ ; 566-567: 1194-1204, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27335164

ABSTRACT

Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~5ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~9360pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P<0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P<0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P<0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco-challenges.


Subject(s)
Immunity, Innate/drug effects , Metals, Heavy/toxicity , Ranidae/immunology , Water Pollutants, Chemical/toxicity , Animals , Cytokines/blood , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Liver/chemistry , Liver/drug effects , Macrophages/chemistry , Macrophages/drug effects , Sri Lanka , Th1-Th2 Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...