Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(9): 6114-6127, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37479578

ABSTRACT

The study objective was to evaluate the effects of a phytogenic feed additive (PFA) on dry matter intake (DMI), average daily gain (ADG), inflammation, and oxidative stress markers of heifer calves exposed to a heat stress bout in the summer. A total of18 Holstein and 4 Jersey heifer calves (192 ± 5 kg of body weight at 162 ± 16 d of age) housed in indoor stalls were assigned to 1 of 2 dietary treatments (n = 11; 9 Holstein and 2 Jersey): (1) a basal total mixed ration (CTL), and (2) CTL top-dressed with 0.25 g/d of PFA. Following 7 d of acclimation, baseline measurements were made over 7 d under regular summer conditions [average temperature-humidity index (THI) = 79 from 0900 to 2000 h, and 75 from 2000 to 0900 h]. Calves were then subjected to a 7-d cyclic heat stress bout (HS) by turning on barn heaters and increasing the barn temperature to 33.0°C only during the daytime (the average THI = 85 from 0900 to 2000 h). The study continued for an extra 4-d period after HS ended (post-HS). The HS increased rectal temperature, skin temperature, and respiration rate from the baseline by 1.0°C, 4.0°C, and 49 breaths/min, respectively. The drinking water intake increased by 32% in response to HS, and calves continued to consume more water (44%) than the baseline consumption even after HS ended. The treatment × time interactions were not significant for feed intake, ADG, partial pressure of O2 in the blood, and blood concentrations of inflammation markers such as haptoglobin and lipopolysaccharide binding protein (LBP), and antioxidant markers such as protein carbonyl and thiobarbituric acid (TBARS). The PFA tended to increase daytime DMI (0.24 kg/d) compared with CTL throughout the experiment but did not affect ADG, which decreased from 1.12 kg/d to 0.26 kg/d in response to HS. Both DMI (13%) and ADG (85%) increased during post-HS relative to baseline, indicating compensatory performances that were not affected by the PFA. Serum haptoglobin and plasma LBP concentrations of PFA calves were 44% and 38% lower than that of CTL calves across all time points. The PFA decreased O2 pressure and tended to decrease protein carbonyl concentration in the blood across all time points. The PFA tended to decrease TBARS concentration on the first day of HS and increase and decrease the ratio of reduced to oxidized glutathione in the blood during the baseline and post-HS periods, respectively. Despite the lack of growth improvements, feeding PFA seems to increase O2 levels in the blood and alleviate oxidative stress and inflammation of heifer calve exposed to diurnal heat waves (~7 d) in the summer.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Cattle , Animals , Female , Haptoglobins , Thiobarbituric Acid Reactive Substances , Weaning , Eating , Heat Stress Disorders/veterinary , Inflammation/veterinary
2.
J Dairy Sci ; 105(2): 1186-1198, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34998555

ABSTRACT

Weaning dairy calves from a high milk volume (≥8.0 kg/d) can negatively affect the growth and welfare even if it is performed in a step-down manner. Supplementation of Gln improved gut development of preweaning calves and mitigated weaning stresses of piglets to extents achieved with antibiotics. The study objective was to examine the effect of initiating a step-down weaning scheme with a Gln supplement at an early age on calf starter intake (CSI), average daily gain (ADG), and paracellular permeability of the intestinal epithelium of calves fed a high volume of milk (9.0 kg/d). Thirty-six Holstein heifer calves were assigned to 3 treatments (n = 12) as follows: (1) initiating weaning at 49 d of age (LW), (2) initiating weaning at 35 d of age (EW), and (3) initiating weaning at 35 d with a Gln supplement (2.0% of dry matter intake) from 28 to 42 d of age (EWG). Calves were fed 9.0 kg/d of whole milk until weaning was initiated by abruptly decreasing the milk volume to 3.0 kg/d. Weaning was completed once calves achieved ≥1.0 kg/d of CSI. The paracellular permeability of the intestinal epithelium was assessed with lactulose-to-mannitol ratio (LMR) in the blood on 1 d before, and 3 and 7 d after the initiation of weaning. The blood was analyzed for haptoglobin, lipopolysaccharide-binding protein (LBP), and metabolites including AA. The CSI increased once milk volume was restricted in all treatments. The CSI of LW was greater than that of EW and EWG during the first week of weaning. The LW, EW, and EWG took 11, 19, and 16 d to achieve ≥1.0 kg/d of CSI and were weaned at 60, 54, and 51 d of age, respectively. The body weight (BW) of LW, EW, and EWG at the initiation of weaning were 68.2, 58.7, and 59.5 kg, respectively. Both LW and EWG achieved similar ADG, but ADG of EW was lower than LW during the first week of weaning. All calves had similar ADG during the second week of weaning. The BW of LW, EW, and EWG at weaning were 74.8, 66.5, and 66.4 kg, representing a 2.0, 1.8, and 1.8-fold increase in birth weight, respectively. All calves had similar BW of 88.6 and 164.3 kg at 10 and 20 wk of age, respectively. Regardless of the age, serum haptoglobin and plasma LBP concentrations increased on d 3 and returned to baseline concentrations on d 7 during weaning. The EW had a lower plasma LBP concentration than LW and EWG on d 3 during weaning. The LMR was similar between treatments on d 3 but increased by 44% for EW and LW on d 7, whereas the LMR of EWG remained unchanged during weaning. The postprandial serum concentration of Gln, Met, Trp, and ß-hydroxybutyrate were greater for EWG than EW during weaning. Beginning step-down weaning at 35 d with a Gln supplement can help maintain the gut barrier function and wean dairy calves with a satisfactory CSI at 7 wk of age without affecting postweaning growth.


Subject(s)
Glutamine , Milk , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Dietary Supplements , Female , Swine , Weaning
3.
J Dairy Sci ; 105(2): 1717-1730, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34802743

ABSTRACT

Even though supplementations of essential AA (EAA) are often related to increased lactose yields in dairy cows, underlying mechanisms connecting EAA availability to the mammary glands and lactose synthesis are poorly understood. The objective of this study was to examine the effects of branched-chain AA (BCAA) including Leu, Ile, and Val on (1) glucose transporter (GLUT1) abundance and glucose uptake, (2) the abundance of proteins regulating lactose synthesis pathway, and (3) fractional synthesis rates of lactose (FSR) using bovine mammary epithelial cells (BMEC) and mammary tissues slices (MTS). The BMEC (n = 4) were allocated randomly to regular Dulbecco's Modified Eagle Medium with Ham's F12 (DMEM/F12) medium (+EAA) or +EAA deficient (by 90%) in all EAA (-EAA), all BCAA (-BCAA), only Leu (-Leu), only Ile (-Ile) or only Val (-Val). Western immunoblotting analyses, depletion of glucose in media, and a proteomic analysis were performed to determine the abundance of GLUT1 in the cell membrane, net glucose uptake, and the abundance of enzymes involved in lactose synthesis pathway in BMEC, respectively. The MTS (n = 6) were allocated randomly to DMEM/F12 medium having all EAA and 13C-glucose at concentrations similar to plasma concentrations of cows (+EAAp), and +EAAp deprived of all BCAA (-BCAAp) or only Leu (-Leup) for 3 h. The 13C enrichments of free glucose pool in MTS (EGlu-free) and the enrichments of glucose incorporated into lactose in MTS and media [ELactose-bound (T&M)] were determined and used in calculating FSR. In BMEC, -BCAA increased the fraction of total GLUT1 translocated to the cell membrane and the fraction that was potentially glycosylated compared with +EAA. Among individual BCAA, only -Leu was associated with a 63% increase in GLUT1 translocated to the cell membrane and a 40% increase in glucose uptake of BMEC. The -BCAA tended to be related to a 75% increase in the abundance of hexokinase in BMEC. Deprivation of Leu tended to increase glucose uptake of MTS but did not affect EGlu-free, ELactose-bound (T&M), or FSR relative to +EAAp. On the other hand, -BCAAp did not affect glucose uptake of MTS but was related to lower ELactose-bound (T&M), or FSR relative to +EAAp. Considering together, decreasing Leu supply to mammary tissues enhances GLUT1 and thus glucose uptake, which, however, does not affect lactose synthesis rates. Moreover, the deficiency of other BCAA, Ile, and Val alone or together with the deficiency of Leu seemed to decrease lactose synthesis rates without affecting glucose uptake. The data also emphasize the importance of addressing the effect of the supply of other nutrients to the mammary glands than the precursor supply in describing the synthesis of a milk component.


Subject(s)
Amino Acids, Branched-Chain , Lactation , Animals , Cattle , Epithelial Cells , Female , Glucose , Lactose , Mammary Glands, Animal , Milk , Milk Proteins , Proteomics
4.
J Dairy Sci ; 103(5): 4262-4274, 2020 May.
Article in English | MEDLINE | ID: mdl-32171510

ABSTRACT

We previously demonstrated that dairy calves having access to drinking water since birth (W0) achieved greater body weight, fiber digestibility, and feed efficiency than those that first received drinking water at 17 d of age (W17). Since gut microbiota composition could be linked to growth and development of animals, the objective of this study was to examine the effect of offering drinking water to newborn calves on composition of bacteria in the gut using a fecal microbiota analysis. Fresh feces were collected directly from the rectum of calves in W0 (n = 14) and W17 (n = 15) at 2, 6, and 10 wk of age. All of the calves were fed pasteurized waste milk, weaned at 7 wk of age, and offered tap water according to the treatment. The DNA was sequenced using 16S rRNA gene-amplicon sequencing on an Illumina MiSeq system (Illumina Inc., San Diego, CA). The sequences were clustered into operational taxonomic units (OTU) with a 99% similarity threshold. Treatment effects on α-diversity indices and relative abundance of the 10 most abundant genera were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Statistical significance (q-value) of treatment effects on the 50 most abundant OTU was determined with a false discovery rate analysis. At 2 wk of age, W0 had a greater number of observed OTU (5,908 vs. 4,698) and species richness (Chao 1 index) than W17. The number of OTU and richness indices increased from wk 2 to 6, but the increment of W17 was greater than that of W0. The Shannon and inverse-Simpson indices increased linearly with age, but no difference was observed between W0 and W17 at any time point. The Firmicutes to Bacteroidetes ratios were also similar at every time point but decreased markedly when calves were weaned. The relative abundance of genera Faecalibacterium and Bacteroides was greater in W0 than W17 at 2 wk of age. The genus Faecalibacterium continued to be more abundant in W0 than W17 at 6 wk of age but had similar abundance 3 wk after weaning (10 wk of age). The abundance of Faecalibacterium at wk 6 was positively correlated with apparent total-tract digestibility of acid detergent fiber at 10 wk of age. Calves receiving water since birth had greater abundance of OTU related to Faecalibacterium prausnitzii, and Bifidobacterium breve at 6 wk of age (q < 0.085). These species are known to improve growth in preweaned calves. The abundance of none of the genera and OTU was different between W0 at W17 at 10 wk of age (q > 0.100). Overall, beginning to offer drinking water at birth has a potential to modulate gut microbiota composition and thereby positively affect performance of young dairy heifer calves (≤10 wk of age).


Subject(s)
Bifidobacterium/growth & development , Cattle , Drinking Water , Faecalibacterium/growth & development , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Bifidobacterium/genetics , Biodiversity , Body Weight , Dietary Fiber , Feces/microbiology , Female , RNA, Ribosomal, 16S , Weaning
5.
J Dairy Sci ; 102(1): 377-387, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30415859

ABSTRACT

Although it is recommended to offer free drinking water (called drinking water hereafter) immediately after birth, producers wait, on average, 17 d to first offer drinking water to newborn dairy calves. The objective of this study was to examine water and feed intake, growth performance, health status, and nutrient digestibility of Holstein heifer calves offered drinking water from birth (W0) as compared with those offered it at 17 d of age (W17), when fed an ad libitum volume of milk. Thirty Holstein heifer calves, balanced for parity of the dam, birth weight, and birth week, were randomly assigned (n = 15) to W0 or W17. Calves had free access to drinking water and a starter ration, offered in 2 separate buckets, until they were 70 d of age. Calves were bottle-fed with pasteurized whole milk 3× per day (2.0 kg/feeding until d 14, and 3.2 kg/feeding thereafter). Calves were partially weaned (33% of the milk allowance 1 × per day) at 42 d of age and completely weaned at 49 d of age. Drinking water intake, starter intake, milk intake, ambient temperature, and the fecal consistency were recorded daily. Body weight, hip height, hip width, heart girth, and body length were measured weekly. Blood (drawn from a jugular vein) was analyzed for hematocrit and haptoglobin concentrations at 14 d of age. On d 69 and 70, total fecal output of individual calves was measured and analyzed for chemical composition to determine apparent total-tract digestibility of nutrients. When offered from birth, newborn calves consumed 0.75 ± 0.05 kg/d water aside from the water they received from ad libitum milk allowance during the first 16 d. Once offered, W17 calves drank more water (59%) than W0 calves during the preweaning period. Starter intake of W0 and W17 calves was similar, but W0 calves consumed 0.285 kg/d more milk and tended to achieve greater body weight and heart girth compared with W17 calves during the preweaning period. Offering water from birth versus offering it later did not affect the number of days with diarrhea, intensity of diarrhea, or blood hematocrit and haptoglobin concentrations of preweaned calves. Despite a similar starter intake, W0 calves had greater hip height, body length, apparent total-tract digestibility of acid detergent fiber and neutral detergent fiber, and feed efficiency than W17 calves postweaning (50 to 70 d of age). When followed up to 5 mo of age, W0 calves had greater body weight than W17 calves. Provision of drinking water immediately after birth could improve growth and development of calves pre- and postweaning, potentially by stimulating rumen development, thus increasing nutrient availability.


Subject(s)
Cattle/physiology , Diet , Drinking Water , Drinking , Nutrients/metabolism , Animal Feed/analysis , Animals , Body Weight , Cattle/growth & development , Diet/veterinary , Female , Random Allocation , Rumen/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...