Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(7): 114410, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923457

ABSTRACT

Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.

2.
Clin Microbiol Infect ; 30(6): 787-794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522841

ABSTRACT

OBJECTIVES: Bacteriophage (phage) therapy is a promising anti-infective option to combat antimicrobial resistance. However, the clinical utilization of phage therapy has been severely compromised by the potential emergence of phage resistance. Although certain phage resistance mechanisms can restore bacterial susceptibility to certain antibiotics, a lack of knowledge of phage resistance mechanisms hinders optimal use of phages and their combination with antibiotics. METHODS: Genome-wide transposon screening was performed with a mutant library of Klebsiella pneumoniae MKP103 to identify phage pKMKP103_1-resistant mutants. Phage-resistant phenotypes were evaluated by time-kill kinetics and efficiency of plating assays. Phage resistance mechanisms were investigated with adsorption, one-step growth, and mutation frequency assays. Antibiotic susceptibility was determined with broth microdilution and population analysis profiles. RESULTS: We observed a repertoire of phage resistance mechanisms in K pneumoniae, such as disruption of phage binding (fhuA::Tn and tonB::Tn), extension of the phage latent period (mnmE::Tn and rpoN::Tn), and increased mutation frequency (mutS::Tn and mutL::Tn). Notably, in contrast to the prevailing view that phage resistance re-sensitizes antibiotic-resistant bacteria, we observed a bidirectional steering effect on bacterial antibiotic susceptibility. Specifically, rpoN::Tn increased susceptibility to colistin while mutS::Tn and mutL::Tn increased resistance to rifampicin and colistin. DISCUSSION: Our findings demonstrate that K pneumoniae employs multiple strategies to overcome phage infection, which may result in enhanced or reduced antibiotic susceptibility. Mechanism-guided phage steering should be incorporated into phage therapy to better inform clinical decisions on phage-antibiotic combinations.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Humans , Drug Resistance, Bacterial , DNA Transposable Elements , Mutation , Phage Therapy
3.
J Med Chem ; 66(23): 16109-16119, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38019899

ABSTRACT

Multidrug-resistant Gram-negative bacteria present an urgent and formidable threat to the global public health. Polymyxins have emerged as a last-resort therapy against these 'superbugs'; however, their efficacy against pulmonary infection is poor. In this study, we integrated chemical biology and molecular dynamics simulations to examine how the alveolar lung surfactant significantly reduces polymyxin antibacterial activity. We discovered that lung surfactant is a phospholipid-based permeability barrier against polymyxins, compromising their efficacy against target bacteria. Next, we unraveled the structure-interaction relationship between polymyxins and lung surfactant, elucidating the thermodynamics that govern the penetration of polymyxins through this critical surfactant layer. Moreover, we developed a novel analog, FADDI-235, which exhibited potent activity against Gram-negative bacteria, both in the presence and absence of lung surfactant. These findings shed new light on the sequestration mechanism of lung surfactant on polymyxins and importantly pave the way for the rational design of new-generation lipopeptide antibiotics to effectively treat Gram-negative bacterial pneumonia.


Subject(s)
Anti-Bacterial Agents , Polymyxins , Polymyxins/pharmacology , Anti-Bacterial Agents/chemistry , Lipopeptides , Bacteria , Surface-Active Agents , Lung
4.
Microbiol Spectr ; 11(4): e0085223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37432123

ABSTRACT

Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-ß-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.


Subject(s)
Klebsiella Infections , Polymyxins , Humans , Polymyxins/pharmacology , Polymyxins/metabolism , Polymyxin B/pharmacology , Klebsiella pneumoniae , Lipid A/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Lipid Metabolism , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests
5.
Int J Antimicrob Agents ; 62(3): 106902, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37380093

ABSTRACT

OBJECTIVES: Antimicrobial resistance is a major global threat. Because of the stagnant antibiotic pipeline, synergistic antibiotic combination therapy has been proposed to treat rapidly emerging multidrug-resistant (MDR) pathogens. We investigated antimicrobial synergy of polymyxin/rifampicin combination against MDR Acinetobacter baumannii. METHODS: In vitro static time-kill studies were performed over 48 h at an initial inoculum of ∼107 CFU/mL against three polymyxin-susceptible but MDR A. baumannii isolates. Membrane integrity was examined at 1 and 4 h post-treatment to elucidate the mechanism of synergy. Finally, a semi-mechanistic PK/PD model was developed to simultaneously describe the time course of bacterial killing and prevention of regrowth by mono- and combination therapies. RESULTS: Polymyxin B and rifampicin alone produced initial killing against MDR A. baumannii but were associated with extensive regrowth. Notably, the combination showed synergistic killing across all three A. baumannii isolates with bacterial loads below the limit of quantification for up to 48 h. Membrane integrity assays confirmed the role of polymyxin-driven outer membrane remodelling in the observed synergy. Subsequently, the mechanism of synergy was incorporated into a PK/PD model to describe the enhanced uptake of rifampicin due to polymyxin-induced membrane permeabilisation. Simulations with clinically utilised dosing regimens confirmed the therapeutic potential of this combination, particularly in the prevention of bacterial regrowth. Finally, results from a neutropenic mouse thigh infection model confirmed the in vivo synergistic killing of the combination against A. baumannii AB5075. CONCLUSION: Our results showed that polymyxin B combined with rifampicin is a promising option to treat bloodstream and tissue infection caused by MDR A. baumannii and warrants clinical evaluations.


Subject(s)
Acinetobacter baumannii , Polymyxin B , Animals , Mice , Polymyxin B/pharmacology , Rifampin/pharmacology , Polymyxins/pharmacology , Drug Synergism , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
6.
Int J Antimicrob Agents ; 62(2): 106856, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37211260

ABSTRACT

INTRODUCTION: Device-related infections are difficult to treat due to biofilms. In this setting, optimizing antibiotic efficacy is difficult as most pharmacokinetic/pharmacdynamic (PK/PD) studies have been performed on planktonic cells, and therapies are limited when multi-drug-resistant bacteria are involved. This study aimed to analyse the PK/PD indices of meropenem predicting anti-biofilm efficacy against meropenem-susceptible and meropenem-resistant strains of Pseudomonas aeruginosa. MATERIALS AND METHODS: Pharmacodynamics of meropenem dosages mimicking those of clinical practice (intermittent bolus of 2 g every 8 h; extended infusion of 2 g over 4 h every 8 h), with and without colistin, were evaluated with the CDC Biofilm Reactor in-vitro model for susceptible (PAO1) and extensively-drug-resistant (XDR-HUB3) P. aeruginosa. Efficacy was correlated with the PK/PD indices for meropenem. RESULTS: For PAO1, both meropenem regimens were bactericidal, with higher killing for extended infusion [∆log10 colony-forming units (CFU)/mL 54-0h=-4.66±0.93 for extended infusion vs ∆log10 CFU/mL 54-0h=-3.4±0.41 for intermittent bolus; P<0.001]. For XDR-HUB3, the intermittent bolus regimen was non-active, but extended infusion showed bactericidal effect (∆log10 CFU/mL 54-0h=-3.65±0.29; P<0.001). Time above minimum inhibitory concentration (f%T>MIC) had the best correlation with efficacy for both strains. The addition of colistin always improved meropenem activity, and resistant strains did not emerge. CONCLUSION: f%T>MIC was the PK/PD index that best correlated with the anti-biofilm efficacy of meropenem; it was better optimized when using the extended infusion regimen, allowing recovery of bactericidal activity in monotherapy, including activity against meropenem-resistant P. aeruginosa. Combining meropenem by extended infusion with colistin offered the most effective therapy for both strains. Optimizing meropenem dosing by extended infusion should be encouraged when treating biofilm-related infections.


Subject(s)
Colistin , Pseudomonas Infections , Humans , Meropenem/pharmacology , Colistin/pharmacology , Colistin/therapeutic use , Pseudomonas aeruginosa , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
7.
J Med Chem ; 66(4): 2865-2876, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36745479

ABSTRACT

Polymyxins (polymyxin B and colistin) are lipopeptide antibiotics used as a last-line treatment for life-threatening multidrug-resistant (MDR) Gram-negative bacterial infections. Unfortunately, their clinical use has been affected by dose-limiting toxicity and increasing resistance. Structure-activity (SAR) and structure-toxicity (STR) relationships are paramount for the development of safer polymyxins, albeit very little is known about the role of the conserved position 10 threonine (Thr) residue in the polymyxin core scaffold. Here, we synthesized 30 novel analogues of polymyxin B1 modified explicitly at position 10 and examined the antimicrobial activity against Gram-negative bacteria and in vivo toxicity and performed molecular dynamics simulations with bacterial outer membranes. For the first time, this study revealed the stereochemical requirements and role of the ß-hydroxy side chain in promoting the correctly folded conformation of the polymyxin that drives outer membrane penetration and antibacterial activity. These findings provide essential information for developing safer and more efficacious new-generation polymyxin antibiotics.


Subject(s)
Gram-Negative Bacterial Infections , Polymyxins , Humans , Anti-Bacterial Agents/chemistry , Polymyxin B/chemistry , Polymyxin B/therapeutic use , Colistin/chemistry , Colistin/therapeutic use , Gram-Negative Bacterial Infections/drug therapy
8.
Cell Mol Life Sci ; 79(6): 296, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35570209

ABSTRACT

Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.


Subject(s)
Potassium Channels, Inwardly Rectifying , Animals , Humans , Kidney/metabolism , Membrane Potentials , Mice , Polymyxins/metabolism , Polymyxins/toxicity , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
9.
Front Chem ; 10: 843163, 2022.
Article in English | MEDLINE | ID: mdl-35372270

ABSTRACT

Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.

10.
Clin Microbiol Infect ; 28(7): 1026.e1-1026.e5, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35283314

ABSTRACT

OBJECTIVES: Evolutionary principles have informed the design of strategies that slow or prevent antibiotic resistance. However, how antibiotic treatment regimens shape the evolutionary dynamics of resistance mutations remains an open question. Here, we investigate varying concentrations of the last-resort polymyxins on the evolution of resistance in Acinetobacter baumannii. METHODS: Polymyxin resistance was measured in 18 multidrug-resistant A. baumannii AB5075 populations treated over 14 days with concentrations of polymyxin B informed by human pharmacokinetics. Time-resolved whole-population sequencing was conducted to track the genetics and population dynamics of susceptible and resistant subpopulations. RESULTS: A critical threshold concentration of polymyxin B (1 mg/L; i.e. 4 × MIC) was identified. Below this threshold concentration, low levels of resistance repeatedly evolved, but no mutations were fixed, and this resistance was reversed upon removal of the antibiotic. This contrasted with evolution at super-MIC levels (≥4 × MIC) of polymyxin B, which drove the evolution of irreversible resistance, with higher levels of antibiotic correlating with greater rates of molecular evolution. Polymyxin-resistant subpopulations carried mutations in a variety of genes, most commonly pmrB, ompA, glmU/glmS, and wecB/wecC, which contributed to membrane remodelling and virulence in A. baumannii. CONCLUSIONS: Our results show that the strength of the selective pressure applied by polymyxin tunes the dynamics of genetic variants within the population, leading to different evolutionary outcomes for the degree, cost and reversibility of resistance. Our study highlights the critical role of integrating evolutionary findings into pharmacokinetics/pharmacodynamics to optimise antibiotic use in patients.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Polymyxins/pharmacology
11.
Comput Struct Biotechnol J ; 20: 485-495, 2022.
Article in English | MEDLINE | ID: mdl-35070170

ABSTRACT

Resistance to the last-line polymyxins is emerging in multidrug-resistant Klebsiella pneumoniae and phage therapy is a promising alternative. However, phage monotherapy often rapidly causes resistance and few studies have examined antibiotic-phage combinations against K. pneumoniae. Here, we investigated the combination of polymyxin B with a novel phage pK8 against an mcr-1-carrying polymyxin-resistant clinical isolate Kp II-503 (polymyxin B MIC, 8 mg/L). The phage genome was sequenced and bacterial metabolomes were analysed at 4 and 24 h following the treatment with polymyxin B (16 mg/L), phage pK8 (102 PFU/mL) and their combination. Minimal metabolic changes across 24 h were observed with polymyxin B alone; whereas a significant inhibition of the citrate cycle, pentose phosphate pathway, amino acid and nucleotide metabolism occurred with the phage-polymyxin combination at both 4 and 24 h, but with phage alone only at 4 h. The development of resistance to phage alone was associated with enhanced membrane lipid and decreased amino acid biosynthesis in Kp II-503. Notably, cAMP, cGMP and cCMP were significantly enriched (3.1-6.6 log2fold) by phage alone and the combination only at 4 h. This is the first systems pharmacology study to investigate the enhanced bacterial killing by polymyxin-phage combination and provides important mechanistic information on phage killing, resistance and antibiotic-phage combination in K. pneumoniae.

12.
Chem Sci ; 12(36): 12211-12220, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34667587

ABSTRACT

Multidrug-resistant Gram-negative bacteria represent a major medical challenge worldwide. New antibiotics are desperately required with 'old' polymyxins often being the only available therapeutic option. Here, we systematically investigated the structure-activity relationship (SAR) of polymyxins using a quantitative lipidomics-informed outer membrane (OM) model of Acinetobacter baumannii and a series of chemically synthesized polymyxin analogs. By integrating chemical biology and all-atom molecular dynamics simulations, we deciphered how each residue of the polymyxin molecule modulated its conformational folding and specific interactions with the bacterial OM. Importantly, a novel designed polymyxin analog FADDI-287 with predicted stronger OM penetration showed improved in vitro antibacterial activity. Collectively, our study provides a novel chemical biology and computational strategy to expedite the discovery of new-generation polymyxins against life-threatening Gram-negative 'superbugs'.

13.
Antibiotics (Basel) ; 10(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918040

ABSTRACT

The emergence of antibiotic resistance has severely impaired the treatment of chronic respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. Since the reintroduction of polymyxins as a last-line therapy against MDR Gram-negative bacteria, resistance to its monotherapy and recurrent infections continue to be reported and synergistic antibiotic combinations have been investigated. In this study, comprehensive in vitro microbiological evaluations including synergy panel screening, population analysis profiling, time-kill kinetics, anti-biofilm formation and membrane damage analysis studies were conducted to evaluate the combination of polymyxin B and meropenem against biofilm-producing, polymyxin-resistant MDR P. aeruginosa. Two phylogenetically unrelated MDR P. aeruginosa strains, FADDI-PA060 (MIC of polymyxin B [MICpolymyxin B], 64 mg/L; MICmeropenem, 64 mg/L) and FADDI-PA107 (MICpolymyxin B, 32 mg/L; MICmeropenem, 4 mg/L) were investigated. Genome sequencing identified 57 (FADDI-PA060) and 50 (FADDI-PA107) genes predicted to confer resistance to a variety of antimicrobials, as well as multiple virulence factors in each strain. The presence of resistance genes to a particular antibiotic class generally aligned with MIC results. For both strains, all monotherapies of polymyxin B failed with substantial regrowth and biofilm formation. The combination of polymyxin B (16 mg/L)/meropenem (16 mg/L) was most effective, enhancing initial bacterial killing of FADDI-PA060 by ~3 log10 CFU/mL, followed by a prolonged inhibition of regrowth for up to 24 h with a significant reduction in biofilm formation (* p < 0.05). Membrane integrity studies revealed a substantial increase in membrane depolarization and membrane permeability in the surviving cells. Against FADDI-PA107, planktonic and biofilm bacteria were completely eradicated. In summary, the combination of polymyxin B and meropenem demonstrated synergistic bacterial killing while reinstating the efficacy of two previously ineffective antibiotics against difficult-to-treat polymyxin-resistant MDR P. aeruginosa.

14.
Int J Antimicrob Agents ; 57(2): 106246, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33253904

ABSTRACT

OBJECTIVES: The pharmacokinetics/pharmacodynamics of continuous infusion (CI) beta-lactams for Pseudomonas aeruginosa biofilm infections has not been defined. This study evaluated the efficacy of several dosage regimens of CI ceftazidime, with or without colistin, an antibiotic with a potential antibiofilm effect, against biofilm-embedded P. aeruginosa. METHODS: Mature biofilms of the reference strain PAO1 and the clinical isolate HUB8 (both ceftazidime- and colistin-susceptible) were investigated over 54h using a dynamic CDC biofilm reactor. CI dosage regimens were ceftazidime monotherapy (4, 10, 20 and 40 mg/L), colistin monotherapy (3.50 mg/L), and combinations of colistin and ceftazidime (4 or 40 mg/L). Efficacy was evaluated by changes in log10colony-forming units (cfu)/mL and confocal microscopy. RESULTS: At 54 h, the antibiofilm activity of ceftazidime monotherapies was slightly higher for ceftazidime 20 mg/L (-2.84 log10cfu/mL) and 40 mg/L (-3.05) against PAO1, but no differences were seen against HUB8. Ceftazidime-resistant colonies emerged with 4 mg/L regimens in both strains and with other regimens in PAO1. Colistin monotherapy had significant antibiofilm activity against HUB8 (-3.07), but lower activity against PAO1 (-1.12), and colistin-resistant strains emerged. Combinations of ceftazidime and colistin had higher antibiofilm activity at 54 h compared with each monotherapy, and prevented the emergence of resistance to both antibiotics; higher antibiofilm activity was observed with ceftazidime 40 mg/L plus colistin compared with ceftazidime 4 mg/L plus colistin (-4.19 vs. -3.10 PAO1; -4.71 vs. -3.44 HUB8). CONCLUSIONS: This study demonstrated that, with %T>MIC=100%, CI ceftazidime displayed concentration-dependent antibiofilm activity against P. aeruginosa biofilm, particularly in combination with colistin. These results support the use of high-dosage regimens of CI ceftazidime with colistin against biofilm-associated infections with ceftazidime-susceptible P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ceftazidime/pharmacology , Colistin/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacokinetics , Ceftazidime/administration & dosage , Ceftazidime/pharmacokinetics , Colistin/administration & dosage , Colistin/pharmacokinetics , Drug Synergism , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , beta-Lactam Resistance
15.
Front Microbiol ; 11: 588658, 2020.
Article in English | MEDLINE | ID: mdl-33162965

ABSTRACT

Rapid dissemination of the plasmid-born polymyxin resistance gene mcr-1 poses a critical medical challenge. MCR-1 expression is tightly controlled and imposes a fitness cost on the bacteria. We used growth studies and metabolomics to examine growth and metabolic changes within E. coli TOP10 at 8 and 24 h in response to different levels of expression of mcr-1. Induction of mcr-1 greatly increased expression at 8 h and markedly reduced bacterial growth; membrane disruption and cell lysis were evident at this time. At 24 h, the expression of mcr-1 dramatically declined with restored growth and membrane integrity, indicating regulation of mcr-1 expression in bacteria to maintain membrane homeostasis. Intermediates of peptide and lipid biosynthesis were the most commonly affected metabolites when mcr-1 was overexpressed in E. coli. Cell wall biosynthesis was dramatically affected with the accumulation of lipids including fatty acids, glycerophospholipids and lysophosphatidylethanolamines, especially at 8 h. In contrast, levels of intermediate metabolites of peptides, amino sugars, carbohydrates and nucleotide metabolism and secondary metabolites significantly decreased. Moreover, the over-expression of mcr-1 resulted in a prolonged reduction in intermediates associated with pentose phosphate pathway and pantothenate and CoA biosynthesis. These findings indicate that over-expression of mcr-1 results in global metabolic perturbations that mainly involve disruption to the bacterial membrane, pentose phosphate pathway as well as pantothenate and CoA biosynthesis.

16.
Article in English | MEDLINE | ID: mdl-32393492

ABSTRACT

Resistance to polymyxin antibiotics is increasing. Without new antibiotic classes, combination therapy is often required. We systematically investigated bacterial killing with polymyxin-based combinations against multidrug-resistant (including polymyxin-resistant), carbapenemase-producing Klebsiella pneumoniae Monotherapies and double- and triple-combination therapies were compared to identify the most efficacious treatment using static time-kill studies (24 h, six isolates), an in vitro pharmacokinetic/pharmacodynamic model (IVM; 48 h, two isolates), and the mouse thigh infection model (24 h, six isolates). In static time-kill studies, all monotherapies (polymyxin B, rifampin, amikacin, meropenem, or minocycline) were ineffective. Initial bacterial killing was enhanced with various polymyxin B-containing double combinations; however, substantial regrowth occurred in most cases by 24 h. Most polymyxin B-containing triple combinations provided greater and more sustained killing than double combinations. Standard dosage regimens of polymyxin B (2.5 mg/kg of body weight/day), rifampin (600 mg every 12 h), and amikacin (7.5 mg/kg every 12 h) were simulated in the IVM. Against isolate ATH 16, no viable bacteria were detected across 5 to 25 h with triple therapy, with regrowth to ∼2-log10 CFU/ml occurring at 48 h. Against isolate BD 32, rapid initial killing of ∼3.5-log10 CFU/ml at 5 h was followed by a slow decline to ∼2-log10 CFU/ml at 48 h. In infected mice, polymyxin B monotherapy (60 mg/kg/day) generally was ineffective. With triple therapy (polymyxin B at 60 mg/kg/day, rifampin at 120 mg/kg/day, and amikacin at 300 mg/kg/day), at 24 h there was an ∼1.7-log10 CFU/thigh reduction compared to the starting inoculum for all six isolates. Our results demonstrate that the polymyxin B-rifampin-amikacin combination significantly enhanced in vitro and in vivo bacterial killing, providing important information for the optimization of polymyxin-based combinations in patients.


Subject(s)
Klebsiella pneumoniae , Polymyxins , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Mice , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Polymyxins/pharmacology , beta-Lactamases/genetics , beta-Lactamases/pharmacology
17.
Article in English | MEDLINE | ID: mdl-30670431

ABSTRACT

Polymyxins are used as a last-line therapy against multidrug-resistant (MDR) New Delhi metallo-ß-lactamase (NDM)-producing Klebsiella pneumoniae However, polymyxin resistance can emerge with monotherapy; therefore, novel strategies are urgently needed to minimize the resistance and maintain their clinical utility. This study aimed to investigate the pharmacodynamics of polymyxin B in combination with the antiretroviral drug zidovudine against K. pneumoniae Three isolates were evaluated in static time-kill studies (0 to 64 mg/liter) over 48 h. An in vitro one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model (IVM) was used to simulate humanized dosage regimens of polymyxin B (4 mg/liter as continuous infusion) and zidovudine (as bolus dose thrice daily to achieve maximum concentration of drug in broth [Cmax] of 6 mg/liter) against K. pneumoniae BM1 over 72 h. The antimicrobial synergy of the combination was further evaluated in a murine thigh infection model against K. pneumoniae 02. In the static time-kill studies, polymyxin B monotherapy produced rapid and extensive killing against all three isolates followed by extensive regrowth, whereas zidovudine produced modest killing followed by significant regrowth at 24 h. Polymyxin B in combination with zidovudine significantly enhanced the antimicrobial activity (≥4 log10 CFU/ml) and minimized bacterial regrowth. In the IVM, the combination was synergistic and the total bacterial loads were below the limit of detection for up to 72 h. In the murine thigh infection model, the bacterial burden at 24 h in the combination group was ≥3 log10 CFU/thigh lower than each monotherapy against K. pneumoniae 02. Overall, the polymyxin B-zidovudine combination demonstrates superior antimicrobial efficacy and minimized emergence of resistance to polymyxins.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Retroviral Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Zidovudine/pharmacology , beta-Lactamases/metabolism , Animals , Drug Synergism , Female , Klebsiella pneumoniae/metabolism , Mice , Microbial Sensitivity Tests/methods
18.
Pharm Res ; 35(10): 187, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30094660

ABSTRACT

PURPOSE: This study aims to develop liposomal formulations containing synergistic antibiotics of colistin and ciprofloxacin for the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. METHODS: Colistin (Col) and ciprofloxacin (Cip) were co-encapsulated in anionic liposomes by ammonium sulfate gradient. Particle size, encapsulation efficiency, in vitro drug release and in vitro antibiotic activities were evaluated. RESULTS: The optimized liposomal formulation has uniform sizes of approximately 100 nm, with encapsulation efficiency of 67.0% (for colistin) and 85.2% (for ciprofloxacin). Incorporation of anionic lipid (DMPG) markedly increased encapsulation efficiency of colistin (from 5.4 to 67.0%); however, the encapsulation efficiency of ciprofloxacin was independent of DMPG ratio. Incorporation of colistin significantly accelerated the release of ciprofloxacin from the DMPG anionic liposomes. In vitro release of ciprofloxacin and colistin in the bovine serum for 2 h were above 70 and 50%. The cytotoxicity study using A549 cells showed the liposomal formulation is as non-toxic as the drug solutions. Liposomal formulations of combinations had enhanced in vitro antimicrobial activities against multidrug resistant P. aeruginosa than the monotherapies. CONCLUSIONS: Liposomal formulations of two synergistic antibiotics was promising against multidrug resistant P. aeruginosa infections.


Subject(s)
Anti-Infective Agents/pharmacology , Ciprofloxacin/pharmacology , Colistin/pharmacology , Phospholipids/chemistry , Pseudomonas aeruginosa/drug effects , A549 Cells , Anti-Infective Agents/chemistry , Cell Survival/drug effects , Ciprofloxacin/chemistry , Colistin/chemistry , Drug Compounding , Drug Resistance, Bacterial , Drug Synergism , Humans , Phosphatidylcholines/chemistry , Surface Properties
19.
Article in English | MEDLINE | ID: mdl-29632010

ABSTRACT

Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa, with ≥2 to 4 log10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enrofloxacin/pharmacology , Polymyxin B/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Combinations , Drug Resistance, Multiple, Bacterial/physiology , Drug Synergism , Humans , Microbial Sensitivity Tests , Models, Theoretical , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...