Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
EMBO Mol Med ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750308

ABSTRACT

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.

2.
Clin Transl Immunology ; 13(2): e1490, 2024.
Article in English | MEDLINE | ID: mdl-38375330

ABSTRACT

Objectives: Systemic inflammatory response syndrome (SIRS) is a frequent complication of cardiopulmonary bypass (CPB). SIRS is associated with significant morbidity and mortality, but its pathogenesis remains incompletely understood, and as a result, biomarkers are lacking and treatment remains expectant and supportive. This study aimed to understand the pathophysiological mechanisms driving SIRS induced by CPB and identify novel therapeutic targets that might reduce systemic inflammation and improve patient outcomes. Methods: Twenty-one patients undergoing cardiac surgery and CPB were recruited, and blood was sampled before, during and after surgery. SIRS was defined using the American College of Chest Physicians/Society of Critical Care Medicine criteria. We performed immune cell profiling and whole blood transcriptomics and measured individual mediators in plasma/serum to characterise SIRS induced by CPB. Results: Nineteen patients fulfilled criteria for SIRS, with a mean duration of 2.7 days. Neutrophil numbers rose rapidly with CPB and remained elevated for at least 48 h afterwards. Transcriptional signatures associated with neutrophil activation and degranulation were enriched during CPB. We identified a network of cytokines governing these transcriptional changes, including granulocyte colony-stimulating factor (G-CSF), a regulator of neutrophil production and function. Conclusions: We identified neutrophils and G-CSF as major regulators of CPB-induced systemic inflammation. Short-term targeting of G-CSF could provide a novel therapeutic strategy to limit neutrophil-mediated inflammation and tissue damage in SIRS induced by CPB.

3.
J Leukoc Biol ; 115(2): 205-221, 2024 01 19.
Article in English | MEDLINE | ID: mdl-37824822

ABSTRACT

Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.


Subject(s)
Granulocyte Colony-Stimulating Factor , Neutrophils , Neutrophils/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Cytosol/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proteomics , Cytokines/metabolism
4.
Nat Commun ; 14(1): 6046, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770424

ABSTRACT

Across the globe, 2-3% of humans carry the p.Ser132Pro single nucleotide polymorphism in MLKL, the terminal effector protein of the inflammatory form of programmed cell death, necroptosis. Here we show that this substitution confers a gain in necroptotic function in human cells, with more rapid accumulation of activated MLKLS132P in biological membranes and MLKLS132P overriding pharmacological and endogenous inhibition of MLKL. In mouse cells, the equivalent Mlkl S131P mutation confers a gene dosage dependent reduction in sensitivity to TNF-induced necroptosis in both hematopoietic and non-hematopoietic cells, but enhanced sensitivity to IFN-ß induced death in non-hematopoietic cells. In vivo, MlklS131P homozygosity reduces the capacity to clear Salmonella from major organs and retards recovery of hematopoietic stem cells. Thus, by dysregulating necroptosis, the S131P substitution impairs the return to homeostasis after systemic challenge. Present day carriers of the MLKL S132P polymorphism may be the key to understanding how MLKL and necroptosis modulate the progression of complex polygenic human disease.


Subject(s)
Apoptosis , Protein Kinases , Humans , Animals , Mice , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Cell Membrane/metabolism , Mutation , Transcription Factors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
5.
iScience ; 26(7): 107173, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456846

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease with significant morbidity and mortality. Type I interferon (IFN) drives SLE pathology and plasmacytoid dendritic cells (pDCs) are potent producers of IFN; however, the specific effects of pDC depletion have not been demonstrated. We show CD123 was highly expressed on pDCs and the anti-CD123 antibody CSL362 potently depleted pDCs in vitro. CSL362 pre-treatment abrogated the induction of IFNα and IFN-induced gene transcription following stimulation with SLE patient-derived serum or immune complexes. RNA transcripts induced in pDCs by ex vivo stimulation with TLR ligands were reflected in gene expression profiles of SLE blood, and correlated with disease severity. TLR ligand-induced protein production by SLE patient peripheral mononuclear cells was abrogated by CSL362 pre-treatment including proteins over expressed in SLE patient serum. These findings implicate pDCs as key drivers in the cellular activation and production of soluble factors seen in SLE.

6.
Clin Transl Immunology ; 12(4): e1446, 2023.
Article in English | MEDLINE | ID: mdl-37091327

ABSTRACT

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods: Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results: LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion: Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.

7.
Nat Immunol ; 24(5): 814-826, 2023 05.
Article in English | MEDLINE | ID: mdl-36997670

ABSTRACT

Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.


Subject(s)
Bone Marrow Transplantation , Granulocyte Colony-Stimulating Factor , Animals , Mice , Cytokines , Interleukin-1 , Tumor Necrosis Factor-alpha/genetics , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/metabolism
8.
Neuropathol Appl Neurobiol ; 49(1): e12888, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36734037

ABSTRACT

AIMS: Muscle biopsy techniques range from needle muscle biopsy (NMB) and conchotome biopsy to open surgical biopsy. It is unknown whether specific biopsy techniques offer superior diagnostic yield or differ in procedural complication rates. Therefore, we aimed to compare the diagnostic utility of NMB, conchotome and open muscle biopsies in the assessment of neuromuscular disorders. METHODS: A systematic literature review of the EMBASE and Medline (Ovid) databases was performed to identify original, full-length research articles that described the muscle biopsy technique used to diagnose neuromuscular disease in both adult and paediatric patient populations. Studies of any design, excluding case reports, were eligible for inclusion. Data pertaining to biopsy technique, biopsy yield and procedural complications were extracted. RESULTS: Sixty-four studies reporting the yield of a specific muscle biopsy technique and, or procedural complications were identified. Open surgical biopsies provided a larger tissue sample than any type of percutaneous muscle biopsy. Where anaesthetic details were reported, general anaesthesia was required in 60% of studies that reported open surgical biopsies. Percutaneous biopsies were most commonly performed under local anaesthesia and despite the smaller tissue yield, moderate- to large-gauge needle and conchotome muscle biopsies had an equivalent diagnostic utility to that of open surgical muscle biopsy. All types of muscle biopsy procedures were well tolerated with few adverse events and no scarring complications were reported with percutaneous sampling. CONCLUSIONS: When a histological diagnosis of myopathy is required, moderate- to large-gauge NMB and the conchotome technique appear to have an equivalent diagnostic yield to that of an open surgical biopsy.


Subject(s)
Muscular Diseases , Neuromuscular Diseases , Adult , Child , Humans , Biopsy/methods , Neuromuscular Diseases/pathology , Biopsy, Needle/methods , Muscular Diseases/pathology , Muscles/pathology , Retrospective Studies
9.
Cell Death Differ ; 30(4): 1059-1071, 2023 04.
Article in English | MEDLINE | ID: mdl-36755069

ABSTRACT

MLKL and RIPK3 are the core signaling proteins of the inflammatory cell death pathway, necroptosis, which is a known mediator and modifier of human disease. Necroptosis has been implicated in the progression of disease in almost every physiological system and recent reports suggest a role for necroptosis in aging. Here, we present the first comprehensive analysis of age-related histopathological and immunological phenotypes in a cohort of Mlkl-/- and Ripk3-/- mice on a congenic C57BL/6 J genetic background. We show that genetic deletion of Mlkl in female mice interrupts immune system aging, specifically delaying the age-related reduction of circulating lymphocytes. -Seventeen-month-old Mlkl-/- female mice were also protected against age-related chronic sterile inflammation in connective tissue and skeletal muscle relative to wild-type littermate controls, exhibiting a reduced number of immune cell infiltrates in these sites and fewer regenerating myocytes. These observations implicate MLKL in age-related sterile inflammation, suggesting a possible application for long-term anti-necroptotic therapy in humans.


Subject(s)
Inflammation , Protein Kinases , Mice , Humans , Female , Animals , Infant , Necrosis/metabolism , Protein Kinases/metabolism , Mice, Inbred C57BL , Inflammation/pathology , Cell Death , Transcription Factors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
10.
Clin Transl Med ; 13(1): e1150, 2023 01.
Article in English | MEDLINE | ID: mdl-36653319

ABSTRACT

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Subject(s)
Fusion Regulatory Protein-1 , Lupus Erythematosus, Systemic , Neutrophils , Humans , Cytokines/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Neutrophils/metabolism , Proteomics , Fusion Regulatory Protein-1/metabolism
11.
Intern Med J ; 53(8): 1383-1389, 2023 08.
Article in English | MEDLINE | ID: mdl-35841190

ABSTRACT

BACKGROUND: Open skeletal muscle biopsy has been the mainstay of sample retrieval in patients with suspected muscle diseases. However, this technique is limited by surgeon and theatre availability, potentially resulting in delayed diagnosis and increasing hospital stay. AIMS: To compare the effectiveness and timeliness of ultrasound guided 14-gauge needle percutaneous muscle biopsy in comparison with open biopsy. METHODS: We performed a retrospective chart review on 19 inpatients who underwent ultrasound-guided percutaneous muscle biopsy using a 14-gauge needle and 19 consecutive inpatients who underwent open surgical muscle biopsy between January 2017 and June 2019. Patient demographics, length of stay, biopsy sample size and the correlation between histological and clinical diagnosis were compared between groups. RESULTS: The median age of both groups was 64 years. Seventy-nine percent of surgical patients were female compared with 58% who had percutaneous biopsy. Surgical biopsies yielded larger samples (median 864 mm3 vs 17 mm3 , P = 0.03). While there was no difference in the length of inpatient stay (median 8 days), patients who had percutaneous biopsy had a shorter referral to procedure time (median 3 days vs 5 days, P = 0.012). Eighty-four percent of patients underwent MRI prior to percutaneous muscle biopsy, whereas only 16% had imaging before surgical biopsy (P ≤ 0.001). Most surgical biopsies were performed on the quadriceps whereas a wide range of muscles were sampled using the percutaneous technique. Overall, the percutaneous muscle sample was non-diagnostic in five cases (26%) despite a clinical diagnosis of myopathy. By comparison, two surgically obtained samples (11%) were non-diagnostic. CONCLUSION: Ultrasound guided percutaneous muscle biopsies were performed faster and a wider range of muscles were targeted. However, this technique yielded smaller samples, which were non-diagnostic in 26% of cases. Increasing the needle gauge or number of passes may improve the diagnostic yield of this technique.


Subject(s)
Image-Guided Biopsy , Ultrasonography, Interventional , Humans , Female , Middle Aged , Male , Retrospective Studies , Ultrasonography , Image-Guided Biopsy/methods , Ultrasonography, Interventional/methods , Muscle, Skeletal/diagnostic imaging
12.
Arthritis Rheumatol ; 75(2): 305-317, 2023 02.
Article in English | MEDLINE | ID: mdl-36057112

ABSTRACT

OBJECTIVE: Remodeling of the coronary arteries is a common feature in severe cases of Kawasaki disease (KD). This pathology is driven by the dysregulated proliferation of vascular fibroblasts, which can lead to coronary artery aneurysms, stenosis, and myocardial ischemia. We undertook this study to investigate whether inhibiting fibroblast proliferation might be an effective therapeutic strategy to prevent coronary artery remodeling in KD. METHOD: We used a murine model of KD (induced by the injection of the Candida albicans water-soluble complex [CAWS]) and analyzed patient samples to evaluate potential antifibrotic therapies for KD. RESULTS: We identified the mechanistic target of rapamycin (mTOR) pathway as a potential therapeutic target in KD. The mTOR inhibitor rapamycin potently inhibited cardiac fibroblast proliferation in vitro, and vascular fibroblasts up-regulated mTOR kinase signaling in vivo in the CAWS mouse model of KD. We evaluated the in vivo efficacy of mTOR inhibition and found that the therapeutic administration of rapamycin reduced vascular fibrosis and intimal hyperplasia of the coronary arteries in CAWS-injected mice. Furthermore, the analysis of cardiac tissue from KD fatalities revealed that vascular fibroblasts localizing with inflamed coronary arteries up-regulate mTOR signaling, confirming that the mTOR pathway is active in human KD. CONCLUSION: Our findings demonstrate that mTOR signaling contributes to coronary artery remodeling in KD, and that targeting this pathway offers a potential therapeutic strategy to prevent or restrict this pathology in high-risk KD patients.


Subject(s)
Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Humans , Animals , Mice , Mucocutaneous Lymph Node Syndrome/drug therapy , Coronary Vessels/pathology , Sirolimus/pharmacology , Disease Models, Animal , TOR Serine-Threonine Kinases
13.
Intern Med J ; 53(3): 311-317, 2023 03.
Article in English | MEDLINE | ID: mdl-35969110

ABSTRACT

Hydroxychloroquine (HCQ) and its close relative chloroquine (CQ) were initially used as antimalarial agents but are now widely prescribed in rheumatology, dermatology and immunology for the management of autoimmune diseases. HCQ is considered to have a better long-term safety profile than CQ and is therefore more commonly used. HCQ has a key role in the treatment of connective tissue diseases including systemic lupus erythematosus (SLE), where it provides beneficial immunomodulation without clinically significant immunosuppression. HCQ can also assist in managing inflammatory arthritis, including rheumatoid arthritis (RA). Debate around toxicity of HCQ in COVID-19 has challenged those who regularly prescribe HCQ to discuss its potential toxicities. Accordingly, we have reviewed the adverse effect profile of HCQ to provide guidance about this therapeutic agent in clinical practice.


Subject(s)
Antirheumatic Agents , COVID-19 , Lupus Erythematosus, Systemic , Humans , Hydroxychloroquine/adverse effects , Antirheumatic Agents/adverse effects , Friends , COVID-19 Drug Treatment , Chloroquine/adverse effects , Lupus Erythematosus, Systemic/drug therapy
14.
Semin Arthritis Rheum ; 57: 152107, 2022 12.
Article in English | MEDLINE | ID: mdl-36335683

ABSTRACT

OBJECTIVES: Positron emission tomography (PET), often combined with computed tomography (CT), is a well-established tool for diagnosing malignancy and inflammatory disease. The idiopathic inflammatory myopathies (IIM) are chronic, multi-system diseases characterised by skeletal muscle inflammation, the potential for extramuscular manifestations such as interstitial lung disease (ILD) and an increased risk of malignancy. We performed a systematic literature review to evaluate the utility of PET or PET-CT in evaluation of IIM. METHODS: A search of Medline and EMBASE from 1990 to 2022 using keywords related to IIM and PET was performed. English language studies of adults with IIM who had PET or PET-CT were included. RESULTS: Our search identified 1173 potentially relevant abstracts, 19 of which were included. The majority of studies used [18F] fluorodeoxyglucose (FDG) PET or PET-CT scans, while the remainder used [18F] florbetapir and [11C] Pittsburgh compound B ([11C] PIB). The sensitivity and specificity of 18F-FDG-PET or 18F-FDG-PET-CT for diagnosing malignancy compared with standard detection methods was 66.7-94% and 80-97.8%, respectively. The sensitivity of 18F-FDG PET-CT for ILD was 93-100% when high-resolution CT was used as the reference standard. 18F-PET and 18F-FDG-PET-CT appear to accurately detect muscle inflammation, although correlations with clinical measures of IIM disease activity were variable. [18F] florbetapir PET-CT and [11C] PIB PET were able to differentiate sporadic inclusion body myositis (IBM) from non-IBM IIM. CONCLUSION: PET-CT holds promise as a single tool that can simultaneously evaluate multiple aspects of IIM. These include screening for associated malignancy, achieving an early diagnosis of ILD and evaluating muscle inflammation.


Subject(s)
Myositis , Positron Emission Tomography Computed Tomography , Adult , Humans , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Myositis/diagnostic imaging , Inflammation/diagnostic imaging
15.
Ann Intern Med ; 175(11): 1621, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36375161
16.
Clin Transl Immunology ; 11(8): e1412, 2022.
Article in English | MEDLINE | ID: mdl-35991774

ABSTRACT

Objective: Vasculitis is characterised by inflammation of the blood vessels. While all layers of the vessel can be affected, inflammation within the intimal layer can trigger thrombosis and arterial occlusion and is therefore of particular clinical concern. Given this pathological role, we have examined how intimal inflammation develops by exploring which (and how) macrophages come to populate this normally immune-privileged site during vasculitis. Methods: We have addressed this question for Kawasaki disease (KD), which is a type of vasculitis in children that typically involves the coronary arteries. We used confocal microscopy and flow cytometry to characterise the macrophages that populate the coronary artery intima in KD patient samples and in a mouse model of KD, and furthermore, have applied an adoptive transfer system to trace how these intimal macrophages develop. Results: In KD patients, intimal hyperplasia coincided with marked macrophage infiltration of the coronary artery intima. Phenotypic analysis revealed that these 'intimal macrophages' did not express markers of resident cardiac macrophages, such as Lyve-1, and instead, were uniformly positive for the chemokine receptor Ccr2, suggesting a monocytic lineage. In support of this origin, we show that circulating monocytes directly invade the intima via transluminal migration during established disease, coinciding with the activation of endothelial cells lining the coronary arteries. Conclusions: During KD, intimal macrophages develop from circulating monocytes that infiltrate the inflamed coronary artery intima by transluminal migration.

17.
J Bone Miner Res ; 37(10): 1876-1890, 2022 10.
Article in English | MEDLINE | ID: mdl-35856245

ABSTRACT

Bone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1Cre :Socs3f/f mice). Dmp1Cre :Socs3f/f :Csf3r-/- mice were generated by crossing Dmp1Cre :Socs3f/f mice with Csf3r-/- mice. Although G-CSFR is not expressed in osteocytes, Csf3r deletion further delayed cortical consolidation in Dmp1Cre :Socs3f/f mice. Micro-CT images revealed extensive, highly porous low-density bone, with little true cortex in the diaphysis, even at 26 weeks of age; including more low-density bone and less high-density bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice than controls. By histology, the area where cortical bone would normally be found contained immature compressed trabecular bone in Dmp1Cre :Socs3f/f :Csf3r-/- mice and greater than normal levels of intracortical osteoclasts, extensive new woven bone formation, and the presence of more intracortical blood vessels than the already high levels observed in Dmp1Cre :Socs3f/f controls. qRT-PCR of cortical bone from Dmp1Cre :Socs3f/f :Csf3r-/- mice also showed more than a doubling of mRNA levels for osteoclasts, osteoblasts, RANKL, and angiogenesis markers. The further delay in cortical bone maturation was associated with significantly more phospho-STAT1 and phospho-STAT3-positive osteocytes, and a threefold increase in STAT1 and STAT3 target gene mRNA levels, suggesting G-CSFR deletion further increases STAT signaling beyond that of Dmp1Cre :Socs3f/f bone. G-CSFR deficiency therefore promotes STAT1/3 signaling in osteocytes, and when SOCS3 negative feedback is absent, elevated local angiogenesis, bone resorption, and bone formation delays cortical bone consolidation. This points to a critical role of G-CSF in replacing condensed trabecular bone with lamellar bone during cortical bone formation. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Granulocyte Colony-Stimulating Factor , Osteocytes , Receptors, Granulocyte Colony-Stimulating Factor , STAT3 Transcription Factor , Animals , Female , Male , Mice , Cortical Bone/diagnostic imaging , Granulocyte Colony-Stimulating Factor/genetics , Interleukin-6 , Osteocytes/pathology , RNA, Messenger , STAT3 Transcription Factor/metabolism
18.
Ann Rheum Dis ; 81(5): 653-661, 2022 05.
Article in English | MEDLINE | ID: mdl-35264321

ABSTRACT

OBJECTIVES: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is implicated in pathogenesis of giant cell arteritis. We evaluated the efficacy of the GM-CSF receptor antagonist mavrilimumab in maintaining disease remission. METHODS: This phase 2, double-blind, placebo-controlled trial enrolled patients with biopsy-confirmed or imaging-confirmed giant cell arteritis in 50 centres (North America, Europe, Australia). Active disease within 6 weeks of baseline was required for inclusion. Patients in glucocorticoid-induced remission were randomly assigned (3:2 ratio) to mavrilimumab 150 mg or placebo injected subcutaneously every 2 weeks. Both groups received a 26-week prednisone taper. The primary outcome was time to adjudicated flare by week 26. A prespecified secondary efficacy outcome was sustained remission at week 26 by Kaplan-Meier estimation. Safety was also assessed. RESULTS: Of 42 mavrilimumab recipients, flare occurred in 19% (n=8). Of 28 placebo recipients, flare occurred in 46% (n=13). Median time to flare (primary outcome) was 25.1 weeks in the placebo group, but the median was not reached in the mavrilimumab group (HR 0.38; 95% CI 0.15 to 0.92; p=0.026). Sustained remission at week 26 was 83% for mavrilimumab and 50% for placebo recipients (p=0.0038). Adverse events occurred in 78.6% (n=33) of mavrilimumab and 89.3% (n=25) of placebo recipients. No deaths or vision loss occurred in either group. CONCLUSIONS: Mavrilimumab plus 26 weeks of prednisone was superior to placebo plus 26 weeks of prednisone for time to flare by week 26 and sustained remission in patients with giant cell arteritis. Longer treatment is needed to determine response durability and quantify the glucocorticoid-sparing potential of mavrilimumab. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number: NCT03827018, Europe (EUdraCT number: 2018-001003-36), and Australia (CT-2018-CTN-01 865-1).


Subject(s)
Giant Cell Arteritis , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Giant Cell Arteritis/drug therapy , Glucocorticoids/therapeutic use , Humans , Prednisone/adverse effects , Treatment Outcome
19.
Nat Commun ; 13(1): 166, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013338

ABSTRACT

Muscle cell death in polymyositis is induced by CD8+ cytotoxic T lymphocytes. We hypothesized that the injured muscle fibers release pro-inflammatory molecules, which would further accelerate CD8+ cytotoxic T lymphocytes-induced muscle injury, and inhibition of the cell death of muscle fibers could be a novel therapeutic strategy to suppress both muscle injury and inflammation in polymyositis. Here, we show that the pattern of cell death of muscle fibers in polymyositis is FAS ligand-dependent necroptosis, while that of satellite cells and myoblasts is perforin 1/granzyme B-dependent apoptosis, using human muscle biopsy specimens of polymyositis patients and models of polymyositis in vitro and in vivo. Inhibition of necroptosis suppresses not only CD8+ cytotoxic T lymphocytes-induced cell death of myotubes but also the release of inflammatory molecules including HMGB1. Treatment with a necroptosis inhibitor or anti-HMGB1 antibodies ameliorates myositis-induced muscle weakness as well as muscle cell death and inflammation in the muscles. Thus, targeting necroptosis in muscle cells is a promising strategy for treating polymyositis providing an alternative to current therapies directed at leukocytes.


Subject(s)
HMGB1 Protein/antagonists & inhibitors , Imidazoles/pharmacology , Indoles/pharmacology , Muscle Fibers, Skeletal/drug effects , Myositis/prevention & control , Necroptosis/drug effects , Polymyositis/genetics , Animals , Antibodies, Neutralizing/pharmacology , C-Reactive Protein/administration & dosage , Fas Ligand Protein/genetics , Fas Ligand Protein/immunology , Female , Gene Expression Regulation , Granzymes/genetics , Granzymes/immunology , HMGB1 Protein/genetics , HMGB1 Protein/immunology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/immunology , Muscle Fibers, Skeletal/pathology , Muscle Strength/drug effects , Muscle Strength/immunology , Muscle, Skeletal/drug effects , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myositis/chemically induced , Myositis/genetics , Myositis/immunology , Necroptosis/genetics , Necroptosis/immunology , Perforin/genetics , Perforin/immunology , Polymyositis/immunology , Polymyositis/pathology , Signal Transduction , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
20.
Cytokine ; 149: 155750, 2022 01.
Article in English | MEDLINE | ID: mdl-34689057

ABSTRACT

Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.


Subject(s)
Inflammation/metabolism , Interleukin-11/metabolism , Animals , Autoimmune Diseases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...