Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Diabetes Obes Metab ; 9 Suppl 2: 56-66, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17919179

ABSTRACT

Insulin is stored in pancreatic beta-cells in beta-granules. Whenever insulin is secreted in response to a nutrient secretagogue, there is a complementary increase in proinsulin biosynthesis to replenish intracellular insulin stores. This specific nutrient regulation of proinsulin biosynthesis is predominately regulated at the translational level. Recently, a highly conserved cis-element in the 5'-untranslated region (UTR) of preproinsulin mRNA, named ppIGE, has been identified that is required for specific translational regulation of proinsulin biosynthesis. This ppIGE is also found in the 5'-UTR of certain other translationally regulated beta-granule protein mRNAs, including the proinsulin processing endopeptidases, PC1/3 and PC2. This provides a mechanism whereby proinsulin processing is adaptable to changes in proinsulin biosynthesis. However, relatively few beta-granules undergo secretion, with most remaining in the storage pool for approximately 5 days. Aged beta-granules are retired by intracellular degradation mechanisms, either via crinophagy and/or autophagy, as another long-term means of maintaining beta-granule stores at optimal levels. When a disconnection between insulin production and secretion arises, as may occur in type 2 diabetes, autophagy further increases to maintain beta-granule numbers. However, if this increased autophagy becomes chronic, autophagia-mediated cell death occurs that could then contribute to beta-cell loss in type 2 diabetes.


Subject(s)
Autophagy/physiology , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Proinsulin/biosynthesis , Autophagy/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Insulin Secretion , Proprotein Convertase 1/metabolism , Proprotein Convertase 2/metabolism , RNA, Messenger/metabolism
2.
Diabetologia ; 49(12): 2920-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17053883

ABSTRACT

AIMS/HYPOTHESIS: Ideally, a therapeutic insulin secretagogue should coordinately increase insulin production and insulin secretion to maintain islet beta cell secretory capacity. We compared the incretin mimetic exendin 4 and the sulfonylurea glibenclamide (known as glyburide in the USA and Canada) for their effects in upholding a balance between (pro)insulin biosynthesis and insulin secretion in pancreatic islets. METHODS: Isolated rat islets were incubated for 1 or 16 h over a range of glucose concentrations (2.8-16.7 mmol/l) with or without exendin 4 (10 nmol/l) or glibenclamide (1 micromol/l). Islets were then analysed for preproinsulin mRNA expression by RNase protection and quantitative real-time RT-PCR assays. Proinsulin biosynthesis was analysed by metabolic pulse-radiolabelling, immunoprecipitation and PAGE. Insulin secretion and insulin content were analysed by radioimmunoassay. RESULTS: Neither exendin 4 nor glibenclamide affected islet preproinsulin mRNA expression. However, exendin 4 significantly increased glucose-induced proinsulin biosynthesis at the translational level within 1 h, in marked contrast to glibenclamide, which inhibited proinsulin biosynthesis, especially at basal and intermediate glucose concentrations. Exendin 4 potentiated insulin secretion in a glucose-dependent manner, whereas glibenclamide stimulated insulin secretion independently of glucose. Exendin 4 better maintained rat islet insulin content compared with glibenclamide, which depleted intracellular stores of insulin in islet beta cells by 40% within 16 h. CONCLUSIONS/INTERPRETATION: Exendin 4 maintains insulin stores and beta cell secretory capacity primarily by translational control of proinsulin biosynthesis in parallel to insulin secretion. Glibenclamide does not regulate insulin production in coordination with stimulated insulin secretion, and consequently depletes islet insulin stores, compromising secretory capacity. Thus, at the level of the beta cell, incretin mimetics have an advantage over sulfonylureas for treatment of type 2 diabetes.


Subject(s)
Insulin-Secreting Cells/physiology , Insulin/biosynthesis , Peptides/pharmacology , Proinsulin/genetics , Venoms/pharmacology , Animals , Exenatide , Glucose/metabolism , Glucose/pharmacology , Glyburide/pharmacology , Insulin-Secreting Cells/drug effects , Male , Proinsulin/biosynthesis , Protein Biosynthesis/drug effects , Protein Precursors/genetics , RNA, Messenger/genetics , Rats , Rats, Wistar
3.
J Endocrinol ; 185(1): 57-67, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15817827

ABSTRACT

Several proteins play a role in the mechanism of insulin exocytosis. However, these 'exocytotic proteins' have yet to account for the regulated aspect of insulin exocytosis, and other factors are involved. In pancreatic exocrine cells, the intralumenal zymogen granule protein, syncollin, is required for efficient regulated exocytosis, but it is not known whether intragranular peptides similarly influence regulated insulin exocytosis. Here, this issue has been addressed using expression of syncollin and a syncollin-green fluorescent protein (syncollinGFP) chimera in rat islet beta-cells as experimental tools. Syncollin is not normally expressed in beta-cells but adenoviral-mediated expression of both syncollin and syncollinGFP indicated that these were specifically targeted to the lumen of beta-granules. Syncollin expression in isolated rat islets had no effect on basal insulin secretion but significantly inhibited regulated insulin secretion stimulated by glucose (16.7 mM), glucagon-like peptide-1 (GLP-1) (10 nM) and glyburide (5 microM). Consistent with specific localization of syncollin to beta-granules, constitutive secretion was unchanged by syncollin expression in rat islets. Syncollin-mediated inhibition of insulin secretion was not due to inadequate insulin production. Moreover, secretagogue-induced increases in cytosolic intracellular Ca2+, which is a prerequisite for triggering insulin exocytosis, were unaffected in syncollin-expressing islets. Therefore, syncollin was most likely acting downstream of secondary signals at the level of insulin exocytosis. Thus, syncollin expression in beta-cells has highlighted the importance of intralumenal beta-granule peptide factors playing a role in the control of insulin exocytosis. In contrast to syncollin, syncollinGFP had no effect on insulin secretion, underlining its usefulness as a 'fluorescent tag' to track beta-granule transport and exocytosis in real time.


Subject(s)
Carrier Proteins/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Membrane Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Exocytosis , Glucagon/pharmacology , Glucagon-Like Peptide 1 , Glucose/pharmacology , Glyburide/pharmacology , Green Fluorescent Proteins/genetics , Humans , Insulin Secretion , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Peptide Fragments/pharmacology , Protein Precursors/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Stimulation, Chemical
4.
Av. diabetol ; 18(3): 168-174, jul. 2002. graf
Article in En | IBECS | ID: ibc-15757
5.
Diabetes ; 50(8): 1791-8, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11473040

ABSTRACT

In this study, we examined whether adenoviral-mediated glycerol kinase (AdV-CMV-GlyK) expression in isolated rat pancreatic islets could introduce glycerol-induced proinsulin biosynthesis. In AdV-CMV-GlyK-infected islets, specific glycerol-induced proinsulin biosynthesis translation and insulin secretion were observed in parallel from the same islets. The threshold concentration of glycerol required to stimulate proinsulin biosynthesis was lower (0.25-0.5 mmol/l) than that for insulin secretion (1.0-1.5 mmol/l), reminiscent of threshold differences for glucose-stimulated proinsulin biosynthesis versus insulin secretion. The dose-dependent glycerol-induced proinsulin biosynthesis correlated with the rate of glycerol oxidation in AdV-CMV-GlyK-infected islets, indicating that glycerol metabolism was required for the response. However, glycerol did not significantly increase lactate output from AdV-CMV-GlyK-infected islets, but the dihydroxyacetone phosphate (DHAP) to alpha-glycerophosphate (alpha-GP) ratio significantly increased in AdV-CMV-GlyK-infected islets incubated at 2 mmol/l glycerol compared with that at a basal level of 2.8 mmol/l glucose (P < or = 0.05). The DHAP:alpha-GP ratio was unaffected in AdV-CMV-GlyK-infected islets incubated at 2 mmol/l glycerol in the added presence of alpha-cyanohydroxycinnaminic acid (alpha-CHC), an inhibitor of the plasma membrane and mitochondrial lactate/pyruvate transporter. However, alpha-CHC inhibited glycerol-induced proinsulin biosynthesis and insulin secretion in AdV-CMV-GlyK-infected islets (>75%; P = 0.05), similarly to glucose-induced proinsulin biosynthesis and insulin secretion in AdV-CMV-GlyK-infected and control islets. These data indicated that in AdV-CMV-GlyK-infected islets, the importance of mitochondrial metabolism of glycerol was required to generate stimulus-response coupling signals to induce proinsulin biosynthesis and insulin secretion.


Subject(s)
Glycerol Kinase/metabolism , Islets of Langerhans/metabolism , Mitochondria/metabolism , Proinsulin/biosynthesis , Adenoviridae , Animals , Cells, Cultured , Coumaric Acids/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Cytomegalovirus , Dihydroxyacetone Phosphate/metabolism , Genes, Reporter , Glucose/pharmacology , Glycerol Kinase/genetics , Glycerophosphates/metabolism , Islets of Langerhans/drug effects , Lactates/metabolism , Male , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Transfection , beta-Galactosidase/genetics
6.
J Biol Chem ; 276(25): 22553-8, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11297542

ABSTRACT

Glucose regulates proinsulin biosynthesis via stimulation of the translation of the preproinsulin mRNA in pancreatic beta-cells. However, the mechanism by which this occurs has remained unclear. Using recombinant adenoviruses that express the preproinsulin mRNA with defined alterations, the untranslated regions (UTRs) of the preproinsulin mRNA were examined for elements that specifically control translation of the mRNA in rat pancreatic islets. These studies revealed that the preproinsulin 5'-UTR was necessary for glucose stimulation of preproinsulin mRNA translation, whereas the 3'-UTR appeared to suppress translation. However, together the 5'- and 3'-UTRs acted cooperatively to markedly increase glucose-induced proinsulin biosynthesis. In primary hepatocytes the presence of the preproinsulin 3'-UTR led to reduced mRNA levels compared with the presence of the SV40 3'-UTR, consistent with the presence of mRNA stability determinants in the 3'-UTR that stabilize the preproinsulin mRNA in a pancreatic beta-cell-specific manner. Translation of these mRNAs in primary hepatocytes was not stimulated by glucose, indicating that regulated translation of the preproinsulin mRNA occurs in a pancreatic beta-cell-specific manner. Thus, the untranslated regions of the preproinsulin mRNA play crucial roles in regulating insulin production and therefore glucose homeostasis by regulating the translation and the stability of the preproinsulin mRNA.


Subject(s)
Glucose/physiology , Proinsulin/genetics , Protein Biosynthesis/physiology , Protein Precursors/genetics , RNA, Messenger/genetics , Untranslated Regions , Animals , Base Sequence , DNA Primers , Insulin , Islets of Langerhans/metabolism , Protein Sorting Signals/physiology , Rats
7.
Biochem J ; 331 ( Pt 2): 553-61, 1998 Apr 15.
Article in English | MEDLINE | ID: mdl-9531497

ABSTRACT

The regulation of proinsulin biosynthesis in pancreatic beta-cells is vital for maintaining optimal insulin stores for glucose-induced insulin release. The majority of nutrient fuels that induce insulin release also stimulate proinsulin biosynthesis, but since insulin exocytosis and proinsulin synthesis involve different cellular mechanisms, a point of divergence in the respective metabolic stimulus-response coupling pathways must exist. A parallel examination of the metabolic regulation of proinsulin biosynthesis and insulin secretion was undertaken in the same beta-cells. In MIN6 cells, glucose-induced proinsulin biosynthesis and insulin release shared a requirement for glycolysis to generate stimulus-coupling signals. Pyruvate stimulated both proinsulin synthesis (threshold 0.13-0.2 mM) and insulin release (threshold 0.2-0.3 mM) in MIN6 cells, which was eliminated by an inhibitor of pyruvate transport (1 mM alpha-cyano-4-hydroxycinnamate). A combination of alpha-oxoisohexanoate and glutamine also stimulated proinsulin biosynthesis and insulin release in MIN6 cells, which, together with the effect of pyruvate, indicated that anaplerosis was necessary for instigating secondary metabolic stimulus-coupling signals in the beta-cell. A consequence of increased anaplerosis in beta-cells is a marked increase in malonyl-CoA, which in turn inhibits beta-oxidation and elevates cytosolic fatty acyl-CoA levels. In the beta-cell, long-chain fatty acyl moieties have been strongly implicated as metabolic stimulus-coupling signals for regulating insulin exocytosis. Indeed, it was found in MIN6 cells and isolated rat pancreatic islets that exogenous oleate, palmitate and 2-bromopalmitate all markedly potentiated glucose-induced insulin release. However, in the very same beta-cells, these fatty acids in contrast inhibited glucose-induced proinsulin biosynthesis. This implies that neither fatty acyl moieties nor beta-oxidation are required for the metabolic stimulus-response coupling pathway specific for proinsulin biosynthesis, and represent an early point of divergence of the two signalling pathways for metabolic regulation of proinsulin biosynthesis and insulin release. Therefore alternative metabolic stimulus-coupling factors for the specific control of proinsulin biosynthesis at the translational level were considered. One possibility examined was an increase in glycerophosphate shuttle activity and change in cytosolic redox state of the beta-cell, as reflected by changes in the ratio of alpha-glycerophosphate to dihydroxyacetone phosphate. Although 16.7 mM glucose produced a significant rise in the alpha-glycerophosphate/dihydroxyacetone phosphate ratio, 1 mM pyruvate did not. It follows that the cytosolic redox state and fatty acyl moieties are not necessarily involved as secondary metabolic stimulus-coupling factors for regulation of proinsulin biosynthesis. However, the results indicate that glycolysis and the subsequent increase in anaplerosis are indeed necessary for this signalling pathway, and therefore an extramitochondrial product of beta-cell pyruvate metabolism (that is upstream of the increased cytosolic fatty acyl-CoA) acts as a key intracellular secondary signal for specific control of proinsulin biosynthesis by glucose at the level of translation.


Subject(s)
Fatty Acids/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Proinsulin/biosynthesis , Animals , Cell Line , Dihydroxyacetone Phosphate/metabolism , Drug Synergism , Glucose/pharmacology , Glycerophosphates/metabolism , Glycolysis , Insulin Secretion , Islets of Langerhans/drug effects , Keto Acids/pharmacology , Lactic Acid/metabolism , Male , Malonyl Coenzyme A/metabolism , Malonyl Coenzyme A/pharmacology , Mitochondria/metabolism , Pyruvic Acid/pharmacology , Rats , Rats, Sprague-Dawley
8.
Yeast ; 10(1): 39-57, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8203151

ABSTRACT

We have tested the clones used in the European Yeast Chromosome III Sequencing Programme for possible artefacts that might have been introduced during cloning or passage through Escherichia coli. Southern analysis was performed to compare the BamHI, EcoRI, HindIII and PstI restriction pattern for each clone with that of the corresponding locus on chromosome III in the parental yeast strain. In addition, further enzymes were used to compare the restriction maps of most clones with the map predicted by the nucleotide sequence (Oliver et al., 1992). Only four of 506 6-bp restriction sites predicted by the sequence were not observed experimentally. No significant cloning artefacts appear to disrupt the published sequence of chromosome III. The restriction patterns of six yeast strains have also been compared. In addition to two previously identified sites of Ty integration on chromosome III (Warmington et al., 1986; Stucka et al., 1989; Newlon et al., 1991), a new polymorphic site involving Ty retrotransposition (the Far Right-Arm transposition Hot-Spot, FRAHS) has been identified close to CRY1. On the basis of simple restriction polymorphisms, the strains S288C, AB972 and W303-1b are closely related, while XJ24-24a and J178 are more distant relatives of S288C. A polyploid distillery yeast is heterozygous for many polymorphisms, particularly on the right arm of the chromosome.


Subject(s)
Artifacts , Chromosomes, Fungal , Cloning, Molecular , Saccharomyces cerevisiae/ultrastructure , Chromosome Mapping , Chromosomes, Fungal/ultrastructure , DNA, Fungal/genetics , Genetic Markers , Polymorphism, Genetic , Restriction Mapping , Saccharomyces cerevisiae/classification
9.
Yeast ; 7(7): 761-72, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1776366

ABSTRACT

We report the sequence of a 7.5 kb region lying between the CRY1 and MAT loci of chromosome III from Saccharomyces cerevisiae. This region lies in the overlap between two major contigs used for the generation of the complete nucleotide sequence of this chromosome. Comparison of this sequence with those reported previously for this overlap [Thierry et al. (1990) Yeast 6, 521; Jia et al. (1991) Yeast 7, 413] reveals 38 nucleotide differences, 45% of which generate changes in the amino acid sequences of the four genes in this region (YCR591, YCR592, YCR521 and YCR522). These differences appear to reflect true sequence polymorphisms between the two yeast strains used to generate the clones used in the sequencing project. Three of the four genes in this region display weak homologies to proteins in the PIR database. Some properties of YCR521 are analogous to those of ribosomal protein genes. However, the functions of all four genes remain obscure.


Subject(s)
Chromosome Mapping , Chromosomes, Fungal , Histone Deacetylases , Membrane Proteins , Nuclear Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Acetyltransferases , Amino Acid Sequence , Base Sequence , Consensus Sequence , Fungal Proteins/genetics , Molecular Sequence Data , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL
...