Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Article in English | MEDLINE | ID: mdl-38858071

ABSTRACT

How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.

2.
Cell ; 187(12): 2898-2900, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848672

ABSTRACT

Epithelial folding is a fundamental biological process that requires epithelial interactions with the underlying mesenchyme. In this issue of Cell, Huycke et al. investigate intestinal villus formation. They discover that water-droplet-like behavior of mesenchymal cells drives their coalescence into uniformly patterned aggregates, which generate forces on the epithelium to initiate folding.


Subject(s)
Epithelium , Mesoderm , Animals , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mesoderm/metabolism , Mesoderm/cytology , Epithelium/metabolism
3.
Cell ; 187(11): 2652-2656, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788688

ABSTRACT

Mechanobiology-the field studying how cells produce, sense, and respond to mechanical forces-is pivotal in the analysis of how cells and tissues take shape in development and disease. As we venture into the future of this field, pioneers share their insights, shaping the trajectory of future research and applications.


Subject(s)
Biophysics , Animals , Humans , Biomechanical Phenomena , Cell Shape , Mechanotransduction, Cellular
4.
Nat Rev Mol Cell Biol ; 25(8): 654-670, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38600372

ABSTRACT

From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.


Subject(s)
Homeostasis , Humans , Animals , Homeostasis/physiology , Biomechanical Phenomena , Embryonic Development/physiology , Regeneration/physiology , Wound Healing/physiology
5.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302719

ABSTRACT

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Subject(s)
Hair Follicle , Mammals , Animals , Cell Shape , Epithelium , Morphogenesis , Cell Division , Hair Follicle/metabolism
6.
Nature ; 623(7988): 828-835, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968399

ABSTRACT

The skin epidermis is constantly renewed throughout life1,2. Disruption of the balance between renewal and differentiation can lead to uncontrolled growth and tumour initiation3. However, the ways in which oncogenic mutations affect the balance between renewal and differentiation and lead to clonal expansion, cell competition, tissue colonization and tumour development are unknown. Here, through multidisciplinary approaches that combine in vivo clonal analysis using intravital microscopy, single-cell analysis and functional analysis, we show how SmoM2-a constitutively active oncogenic mutant version of Smoothened (SMO) that induces the development of basal cell carcinoma-affects clonal competition and tumour initiation in real time. We found that expressing SmoM2 in the ear epidermis of mice induced clonal expansion together with tumour initiation and invasion. By contrast, expressing SmoM2 in the back-skin epidermis led to a clonal expansion that induced lateral cell competition without dermal invasion and tumour formation. Single-cell analysis showed that oncogene expression was associated with a cellular reprogramming of adult interfollicular cells into an embryonic hair follicle progenitor (EHFP) state in the ear but not in the back skin. Comparisons between the ear and the back skin revealed that the dermis has a very different composition in these two skin types, with increased stiffness and a denser collagen I network in the back skin. Decreasing the expression of collagen I in the back skin through treatment with collagenase, chronic UV exposure or natural ageing overcame the natural resistance of back-skin basal cells to undergoing EHFP reprogramming and tumour initiation after SmoM2 expression. Altogether, our study shows that the composition of the extracellular matrix regulates how susceptible different regions of the body are to tumour initiation and invasion.


Subject(s)
Cell Transformation, Neoplastic , Extracellular Matrix , Skin Neoplasms , Tumor Microenvironment , Animals , Mice , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Collagen/metabolism , Epidermis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Skin Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Ear/pathology , Collagenases/metabolism , Aging , Ultraviolet Rays , Mutant Proteins/genetics , Mutant Proteins/metabolism
7.
Ann Rheum Dis ; 82(11): 1474-1486, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37479494

ABSTRACT

OBJECTIVES: Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS: Triple knockout (tKO) mice with a combined ablation of integrins α1ß1, α2ß1 and α11ß1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS: Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS: The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.

8.
JMIR Public Health Surveill ; 9: e46563, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37440286

ABSTRACT

Exposure notification applications (ENAs) or digital proximity tracing apps were used in several countries during the COVID-19 pandemic. In this viewpoint, we share our experience of implementing and running the Finnish ENA (Koronavilkku), one of the national ENAs with the highest proportion of users during the pandemic. With the aim of strengthening public trust and increasing app uptake, there was a strong prioritization of privacy and data security for the end user throughout the ENA development. This, in turn, limited the use of the app as a tool for health care professionals and deeper insight into its potential effectiveness. The ENA was designed to supplement conventional contact tracing, rather than replace it, and to serve as an early warning system and a trigger for action for the user in case of potential exposure. The predefined target of 40% uptake in the population was achieved within 3 months of the ENA launch. We consider easy-to-understand information produced together with communication experts crucial during the changing pandemic situation. This information educated people about the app as one component in mitigating the pandemic. As the pandemic and its mitigation evolved, the ENA also needed adapting and updating. A few months after its launch, Finland joined European interoperability, which allowed the ENA to share information with ENAs of other countries. We added automatic token issuing to the ENA as of mid-2021. If added earlier and more comprehensively, automatization could have more effectively saved resources in health care services and prevented overburdening contact tracing teams, while also notifying potentially exposed individuals quicker and more reliably. In the spring of 2021, the number of active apps started to gradually decline. Quarantine and testing practices for asymptomatic vaccinated individuals following exposure to the virus were eased and home tests became more common, eventually replacing laboratory testing for much of the population. Taken together, this led to decreased token issuance, which weakened the potential public health usefulness of the app. A self-service option for token issuance would likely have prolonged the lifespan of the app. The ENA was discontinued in mid-2022. Regularly conducted surveys would have helped gain timely knowledge on the use and effectiveness of the app for better responding to the changing needs during the pandemic.


Subject(s)
COVID-19 , Cell Phone , Mobile Applications , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Finland/epidemiology , Pandemics/prevention & control , Disease Notification
9.
Sci Rep ; 13(1): 7743, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173371

ABSTRACT

Epithelia maintain a functional barrier during tissue turnover while facing varying mechanical stress. This maintenance requires both dynamic cell rearrangements driven by actomyosin-linked intercellular adherens junctions and ability to adapt to and resist extrinsic mechanical forces enabled by keratin filament-linked desmosomes. How these two systems crosstalk to coordinate cellular movement and mechanical resilience is not known. Here we show that in stratifying epithelia the polarity protein aPKCλ controls the reorganization from stress fibers to cortical actomyosin during differentiation and upward movement of cells. Without aPKC, stress fibers are retained resulting in increased contractile prestress. This aberrant stress is counterbalanced by reorganization and bundling of keratins, thereby increasing mechanical resilience. Inhibiting contractility in aPKCλ-/- cells restores normal cortical keratin networks but also normalizes resilience. Consistently, increasing contractile stress is sufficient to induce keratin bundling and enhance resilience, mimicking aPKC loss. In conclusion, our data indicate that keratins sense the contractile stress state of stratified epithelia and balance increased contractility by mounting a protective response to maintain tissue integrity.


Subject(s)
Actomyosin , Signal Transduction , Actomyosin/metabolism , Epithelium/metabolism , Cytoskeleton/metabolism , Keratins/metabolism , Epithelial Cells/metabolism
10.
Trends Cell Biol ; 33(6): 477-494, 2023 06.
Article in English | MEDLINE | ID: mdl-36270939

ABSTRACT

The existence of stem cells (SCs) at the tip of the cellular differentiation hierarchy has fascinated the scientific community ever since their discovery in the early 1950s to 1960s. Despite the remarkable success of the SC theory and the development of SC-based treatments, fundamental features of SCs remain enigmatic. Recent advances in single-cell lineage tracing, live imaging, and genomic technologies have allowed capture of life histories and transcriptional signatures of individual cells, leaving SCs much less space to 'hide'. Focusing on epithelial SCs and comparing them to other SCs, we discuss new paradigms of the SC niche, dynamics, and pathology, highlighting key open questions in SC biology that need to be resolved for harnessing SC potential in regenerative medicine.


Subject(s)
Adult Stem Cells , Humans , Stem Cells , Cell Lineage , Cell Differentiation
11.
Cell ; 185(19): 3638-3638.e1, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113430

ABSTRACT

Cells are continuously exposed to tissue-specific extrinsic forces that are counteracted by cell-intrinsic force generation through the actomyosin cytoskeleton and alterations in the material properties of various cellular components, including the nucleus. Forces impact nuclei both directly through inducing deformation, which is sensed by various mechanosensitive components of the nucleus, as well as indirectly through the actomyosin cytoskeleton and mechanosensitive pathways activated in the cytoplasm. To view this SnapShot, open or download the PDF.


Subject(s)
Actomyosin , Mechanotransduction, Cellular , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Mechanotransduction, Cellular/physiology
12.
EMBO J ; 41(17): e111650, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35899396

ABSTRACT

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Subject(s)
Mitogen-Activated Protein Kinases , Muscle, Skeletal , Animals , MAP Kinase Kinase Kinases , Mice , Mitogen-Activated Protein Kinases/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Phosphorylation , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/genetics
14.
Nat Rev Genet ; 23(10): 624-643, 2022 10.
Article in English | MEDLINE | ID: mdl-35606569

ABSTRACT

Cells and tissues generate and are exposed to various mechanical forces that act across a range of scales, from tissues to cells to organelles. Forces provide crucial signals to inform cell behaviour during development and adult tissue homeostasis, and alterations in forces and in their downstream mechanotransduction pathways can influence disease progression. Recent advances have been made in our understanding of the mechanisms by which forces regulate chromatin organization and state, and of the mechanosensitive transcription factors that respond to the physical properties of the cell microenvironment to coordinate gene expression, cell states and behaviours. These insights highlight the relevance of mechanosensitive transcriptional regulation to physiology, disease and emerging therapies.


Subject(s)
Chromatin , Mechanotransduction, Cellular , Chromatin/genetics , Gene Expression Regulation , Homeostasis , Mechanotransduction, Cellular/physiology , Transcription Factors
15.
Nature ; 605(7908): 31-32, 2022 05.
Article in English | MEDLINE | ID: mdl-35478018
16.
Proc Natl Acad Sci U S A ; 119(11): e2106098119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259013

ABSTRACT

SignificanceThe pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration.


Subject(s)
Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Actomyosin/chemistry , Actomyosin/metabolism , Allosteric Regulation , Binding Sites , Cell Adhesion , Cell Movement , Enzyme Stability , Focal Adhesions , Mechanotransduction, Cellular , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Models, Molecular , Molecular Conformation , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Structure-Activity Relationship , Substrate Specificity
17.
Article in English | MEDLINE | ID: mdl-34187806

ABSTRACT

Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.


Subject(s)
Cell Nucleus , Mechanotransduction, Cellular , Cell Differentiation , Chromatin , Genome , Mechanotransduction, Cellular/physiology
18.
Dev Cell ; 56(24): 3303-3304, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34932945

ABSTRACT

Tissues need strategies to cope with genomic insults to maintain their integrity. In this issue of Developmental Cell, Kato et al. use in vivo fate tracing to observe selective elimination of epidermal stem cells (EpiSCs) harboring severe genomic lesions through their differentiation and compensatory expansion of surrounding intact cells.

19.
Nat Cell Biol ; 23(7): 771-781, 2021 07.
Article in English | MEDLINE | ID: mdl-34239060

ABSTRACT

Tissue turnover requires activation and lineage commitment of tissue-resident stem cells (SCs). These processes are impacted by ageing, but the mechanisms remain unclear. Here, we addressed the mechanisms of ageing in murine hair follicle SCs (HFSCs) and observed a widespread reduction in chromatin accessibility in aged HFSCs, particularly at key self-renewal and differentiation genes, characterized by bivalent promoters occupied by active and repressive chromatin marks. Consistent with this, aged HFSCs showed reduced ability to activate bivalent genes for efficient self-renewal and differentiation. These defects were niche dependent as the transplantation of aged HFSCs into young recipients or synthetic niches restored SC functions. Mechanistically, the aged HFSC niche displayed widespread alterations in extracellular matrix composition and mechanics, resulting in mechanical stress and concomitant transcriptional repression to silence promoters. As a consequence, increasing basement membrane stiffness recapitulated age-related SC changes. These data identify niche mechanics as a central regulator of chromatin state, which, when altered, leads to age-dependent SC exhaustion.


Subject(s)
Cell Differentiation , Cell Self Renewal , Cellular Senescence , Chromatin Assembly and Disassembly , Hair Follicle/physiology , Promoter Regions, Genetic , Stem Cell Niche , Stem Cells/physiology , Animals , Cell Differentiation/genetics , Cell Lineage , Cell Self Renewal/genetics , Cells, Cultured , Cellular Senescence/genetics , Extracellular Matrix/physiology , Gene Silencing , Hair Follicle/cytology , Hair Follicle/metabolism , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Mice, Knockout , Skin Aging , Stem Cells/metabolism , Stress, Mechanical , Transcription, Genetic
20.
Mol Biol Cell ; 32(18): 1724-1736, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34081532

ABSTRACT

The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin-based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin , Antigens, CD/metabolism , Cadherins/metabolism , Calcium Signaling , Mechanotransduction, Cellular , Actomyosin/metabolism , Adherens Junctions/physiology , Antigens, CD/genetics , Biomechanical Phenomena , Cadherins/genetics , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Calcium Signaling/drug effects , Cytochalasin D/pharmacology , Filamins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Ion Channels/genetics , Ion Channels/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Protein Interaction Maps , p21-Activated Kinases/metabolism , rac GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...