Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(44): 98832-98847, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35843969

ABSTRACT

The main aim of this work was to develop a heterogeneous Fe2O3/CaO2 bifunctional catalyst prepared from iron sand and 3 different CaO2 sources (CaCO3, Ca (OH)2, and limestone) using wet impregnation and calcination methods for biodiesel production. The effects of different CaO2 sources and Fe/Ca ratio in the catalyst were investigated to provide insight into the catalyst character and biodiesel yield. X-ray diffraction, X-ray fluorescence, and scanning electron microscopy analyses were used to characterize the catalyst. CaCO3 was concluded as the best CaO2 source, while the best Fe/Ca configuration was found to be 1:4, giving the highest biodiesel yield (97.0401%) with no diglycerides. Greater addition of Fe loading would result in an amorphous structure, and all catalysts were relatively crystalline. Fe was concluded to favor the esterification reaction and biodiesel formation, while CaO2 was seen to favor the transesterification reaction and fatty acid methyl ester (FAME) formation. The catalyst mechanism was also established in this study, where esterification of free fatty acid (FFA) and glycerol took place on the acid site to produce diglyceride and transesterification of triglyceride by methanol occurred on the basic site.


Subject(s)
Biofuels , Plant Oils , Plant Oils/chemistry , Biofuels/analysis , Sand , Esterification , Catalysis , Cooking
2.
Molecules ; 25(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486458

ABSTRACT

The main aim of this work was to investigate the suitability of a KI/KIO3 impregnated hydroxyapatite (HAP) catalyst derived from natural phosphate rocks for biodiesel production. This study evaluated the effect of impregnation concentrations (1-6% w/w) on the catalyst performance in biodiesel production. The biodiesel was produced from waste cooking oil (WCO) under simultaneous esterification-transesterification reactions at 60 °C for 6 h. The results showed that the biodiesel yield increased by increasing impregnation concentration and the maximum yield (91.787%) was achieved at an impregnation concentration of 5% w/w. The KI/HAP catalyst showed better performance (91.78% biodiesel yield, 59.1% FAME yield and surface area of 13.513 m2/g) as compared to the KIO3/HAP catalyst (90.07% biodiesel yield, 55.0% FAME yield and surface area of 10.651 m2/g).


Subject(s)
Biofuels , Biotechnology/methods , Durapatite/chemistry , Phosphates/chemistry , Adsorption , Catalysis , Cooking , Esterification , Esters/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Plant Oils/chemistry , Potassium/chemistry , Potassium Iodide/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...