Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plants (Basel) ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316952

ABSTRACT

Weed risk assessment systems are used to estimate the potential weediness or invasiveness of introduced species in non-agricultural habitats. However, an equivalent system has not been developed for weed species that occur in agronomic cropland. Therefore, the Agricultural Weed Assessment Calculator (AWAC) was developed to quantify the present and potential future adverse impact of a weed species on crop production and profitability (threat analysis), thereby informing or directing research, development, and extension (RDE) investments or activities. AWAC comprises 10 questions related primarily to a weed's abundance and economic impact. Twenty weed species from across Australia were evaluated by AWAC using existing information and expert opinion, and rated as high, medium, or low for RDE prioritization based on total scores of 70 to 100, 40 to <70, or <40, respectively. Five species were rated as high (e.g., Lolium rigidum Gaud.), eight were rated as medium (e.g., Conyza spp.), and seven were rated as low (e.g., Rapistrum rugosum L.). Scores were consistent with the current state of knowledge of the species' impact on grain crop production in Australia. AWAC estimated the economic or agronomic threat of 20 major or minor agricultural weeds from across Australia. The next phase of development is the testing of AWAC by weed practitioners (e.g., agronomists, consultants, farmers) to verify its utility and robustness in accurately assessing these and additional weed species.

2.
Pest Manag Sci ; 72(2): 264-71, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25969123

ABSTRACT

BACKGROUND: This study confirms and characterises glyphosate resistance in two polyploid Echinochloa colona populations from north-eastern Australia. RESULTS: Glyphosate dose response revealed that the two resistant populations were marginally (up to twofold) resistant to glyphosate. Resistant plants did not differ in non-target-site foliar uptake and translocation of (14) C-glyphosate, but contained the known target-site 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) mutation Pro-106-Thr and/or Pro-106-Leu. Although plants carrying either a single or two EPSPS mutations were glyphosate resistant relative to the susceptible population, they were still controlled at the field rate of glyphosate (450 g a.e. ha(-1) ) when treated under warm conditions (25/20 °C). However, when treated in hot conditions (35/30 °C), most mutant resistant plants (68%) can survive the field rate, and an increase (2.5-fold) in glyphosate LD50 was found for both the R and S populations. CONCLUSIONS: This study shows that one or two EPSPS Pro-106 mutations are insufficient to confer field-rate glyphosate resistance in polyploidy E. colona at mild temperatures. However, control of these mutant plants at the glyphosate field rate is poor at high temperatures, probably owing to reduced glyphosate efficacy. Therefore, glyphosate should be applied during relatively mild (warm) temperature periods in the summer growing season to improve E. colona control.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Echinochloa/physiology , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , 3-Phosphoshikimate 1-Carboxyvinyltransferase/antagonists & inhibitors , Australia , Echinochloa/drug effects , Echinochloa/enzymology , Echinochloa/genetics , Glycine/pharmacology , Mutation , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Polyploidy , Temperature , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...