Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367508

ABSTRACT

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Subject(s)
Measles virus , Measles , Humans , Measles virus/genetics , Antibodies, Neutralizing , Neutralization Tests , Measles Vaccine/genetics , Measles/prevention & control , Antibodies, Viral , Epitopes/genetics , Hemagglutinins, Viral/genetics , Antibodies, Monoclonal
2.
Nat Commun ; 13(1): 2314, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538057

ABSTRACT

The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Genome, Viral/genetics , Genomics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A virus/genetics , Influenza, Human/epidemiology , Influenza, Human/genetics
3.
Science ; 368(6497): 1367-1370, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32554594

ABSTRACT

Many infectious diseases are thought to have emerged in humans after the Neolithic revolution. Although it is broadly accepted that this also applies to measles, the exact date of emergence for this disease is controversial. We sequenced the genome of a 1912 measles virus and used selection-aware molecular clock modeling to determine the divergence date of measles virus and rinderpest virus. This divergence date represents the earliest possible date for the establishment of measles in human populations. Our analyses show that the measles virus potentially arose as early as the sixth century BCE, possibly coinciding with the rise of large cities.


Subject(s)
Communicable Diseases, Emerging/history , Evolution, Molecular , Genetic Variation , Measles virus/genetics , Measles/history , Cities/history , Communicable Diseases, Emerging/virology , History, Ancient , Humans , Measles/virology , Rinderpest virus/genetics
4.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31422870

ABSTRACT

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Subject(s)
Extracellular Traps/immunology , Gallstones/immunology , Neutrophils/immunology , Animals , Female , Humans , Immunity, Innate/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Reactive Oxygen Species/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...