Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hematol ; 95(3): 238-244, 2020 03.
Article in English | MEDLINE | ID: mdl-31804739

ABSTRACT

The genetic and molecular abnormalities underlying histological transformation (HT) of nodal marginal zone lymphoma (NMZL) to diffuse large B-cell lymphoma (DLBCL) are not well known. While del(20q12) is commonly deleted in myelodysplastic syndrome it has not previously been associated with DLBCL. We recently described a case of DLBCL harboring del(20q12) in a patient with a history of MZL involving lymph nodes and skin. Here we report eight matched cases of transformed MZL(tMZL): six from nodal MZL (tNMZL) and two from splenic MZL (tSMZL). We found >20% del(20q12) in 4/6 tNMZL, but not in tSMZL, nor in unmatched DLBCL, MZL with increased large cells (MZL-ILC), or MZL cases. To examine whether transformation is associated with a specific gene signature, the matched cases were analyzed for multiplexed gene expression using the Nanostring PanCancer Pathways panel. The differential gene expression signature revealed enrichment of inflammatory markers, as previously observed in MZL. Also, tMZL and de novo DLBCL were enriched for extracellular matrix proteins such as collagen and fibronectin, vascular development protein PDGFRß, DNA repair protein RAD51, and oncogenic secrete protein Wnt11. A subset of genes is expressed differentially in del(20q12) tMZL cases vs non-del(20q12) tMZL cases. These results suggest a specific pathway is involved in the histological transformation of NMZL, which could serve as an indicator of aggressive clinical course in this otherwise indolent neoplasm.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 20/genetics , Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell, Marginal Zone , Lymphoma, Large B-Cell, Diffuse , Neoplasm Proteins , Skin Neoplasms , Aged , Aged, 80 and over , Female , Humans , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/metabolism , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
2.
Cancer Res ; 79(1): 263-273, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30487137

ABSTRACT

Low-dose CT (LDCT) is widely accepted as the preferred method for detecting pulmonary nodules. However, the determination of whether a nodule is benign or malignant involves either repeated scans or invasive procedures that sample the lung tissue. Noninvasive methods to assess these nodules are needed to reduce unnecessary invasive tests. In this study, we have developed a pulmonary nodule classifier (PNC) using RNA from whole blood collected in RNA-stabilizing PAXgene tubes that addresses this need. Samples were prospectively collected from high-risk and incidental subjects with a positive lung CT scan. A total of 821 samples from 5 clinical sites were analyzed. Malignant samples were predominantly stage 1 by pathologic diagnosis and 97% of the benign samples were confirmed by 4 years of follow-up. A panel of diagnostic biomarkers was selected from a subset of the samples assayed on Illumina microarrays that achieved a ROC-AUC of 0.847 on independent validation. The microarray data were then used to design a biomarker panel of 559 gene probes to be validated on the clinically tested NanoString nCounter platform. RNA from 583 patients was used to assess and refine the NanoString PNC (nPNC), which was then validated on 158 independent samples (ROC-AUC = 0.825). The nPNC outperformed three clinical algorithms in discriminating malignant from benign pulmonary nodules ranging from 6-20 mm using just 41 diagnostic biomarkers. Overall, this platform provides an accurate, noninvasive method for the diagnosis of pulmonary nodules in patients with non-small cell lung cancer. SIGNIFICANCE: These findings describe a minimally invasive and clinically practical pulmonary nodule classifier that has good diagnostic ability at distinguishing benign from malignant pulmonary nodules.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Gene Expression Profiling , Lung Neoplasms/diagnosis , Multiple Pulmonary Nodules/diagnosis , Tomography, X-Ray Computed/methods , Aged , Algorithms , Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Diagnosis, Differential , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/blood , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Male , Middle Aged , Multiple Pulmonary Nodules/blood , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/genetics , Prospective Studies
3.
Cancer Discov ; 3(12): 1378-93, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24104062

ABSTRACT

UNLABELLED: An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the noncanonical Wnt5A signaling pathway, ROR1 and ROR2. ROR1 and ROR2 are inversely expressed in melanomas and negatively regulate each other. Furthermore, hypoxia initiates a shift of ROR1-positive melanomas to a more invasive, ROR2-positive phenotype. Notably, this receptor switch induces a 10-fold decrease in sensitivity to BRAF inhibitors. In patients with melanoma treated with the BRAF inhibitor vemurafenib, Wnt5A expression correlates with clinical response and therapy resistance. These data highlight the fact that mechanisms that guide metastatic progression may be linked to those that mediate therapy resistance. SIGNIFICANCE: These data show for the fi rst time that a single signaling pathway, the Wnt signaling pathway, can effectively guide the phenotypic plasticity of tumor cells, when primed to do so by a hypoxic microenvironment. Importantly, this increased Wnt5A signaling can give rise to a subpopulation of highly invasive cells that are intrinsically less sensitive to novel therapies for melanoma, and targeting the Wnt5A/ROR2 axis could improve the efficacy and duration of response for patients with melanoma on vemurafenib.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Hypoxia , Drug Resistance, Neoplasm , Indoles/therapeutic use , Melanoma/drug therapy , Melanoma/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Sulfonamides/therapeutic use , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Melanoma/genetics , Melanoma/secondary , Melanoma, Experimental , Mice , Mice, Nude , Neoplasm Metastasis , Phenotype , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Vemurafenib , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL
...